Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal

Filter by science education

 
 

The Use of an Automated System (GreenFeed) to Monitor Enteric Methane and Carbon Dioxide Emissions from Ruminant Animals

1Department of Animal Science, Pennsylvania State University, 2C-Lock, Inc. Rapid City, SD, 3Color Productions, State College, PA, 4Departamento de Zootecnia, Universidade Estadual de Maringá

JoVE 52904


 Environment

Epithelial Cell Repopulation and Preparation of Rodent Extracellular Matrix Scaffolds for Renal Tissue Development

1Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, 2Department of Surgery, Feinberg School of Medicine, Northwestern University, 3Department of Biomedical Engineering, Northwestern University, 4Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern University, 5Department of Internal Medicine, University of New Mexico HSC, 6Department of Pathology, University of New Mexico HSC, 7Department of Chemical and Biological Engineering, Northwestern University, 8Chemistry of Life Processes Institute, Northwestern University, 9Department of Surgery, Jesse Brown VA Medical Center

JoVE 53271


 Bioengineering

Imaging Ca2+ Dynamics in Cone Photoreceptor Axon Terminals of the Mouse Retina

1Institute for Ophthalmic Research, University of Tübingen, 2Graduate School of Cellular & Molecular Neuroscience, University of Tübingen, 3Bernstein Centre for Computational Neuroscience, University of Tübingen, 4Molecular Genetics Laboratory, University of Tübingen, 5Centre for Ophthalmology, University of Tübingen

JoVE 52588


 Neuroscience

High-throughput Detection Method for Influenza Virus

1Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, 2Department of Microbiology, Mount Sinai School of Medicine, 3Laboratory of Molecular Genetics, Blood Research Institute, 4City of Milwaukee Health Department Laboratory, 5Division of Hematology-Oncology/BMT, Children's Hospital of Wisconsin, Medical College of Wisconsin, 6Division of Hematology and Oncology, Dept Medicine, Medical College of Wisconsin

JoVE 3623


 Immunology and Infection

fMRI Validation of fNIRS Measurements During a Naturalistic Task

1Department of Psychiatry, Yale School of Medicine, 2Department of Electronics and Bioinformatics, Meiji University, 3Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, 4ADAM Center, Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, 5Department of Neurobiology, Yale School of Medicine

JoVE 52116


 Behavior

Fabrication of a Dipole-assisted Solid Phase Extraction Microchip for Trace Metal Analysis in Water Samples

1Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 2Center for Measurement Standards, Industrial Technology Research Institute, 3National Synchrotron Radiation Research Center, 4Department of Chemistry, National Changhua University of Education

JoVE 53500


 Bioengineering

A Guide to Modern Quantitative Fluorescent Western Blotting with Troubleshooting Strategies

1Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, 2Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, 3Centre for Integrative Physiology, University of Edinburgh, 4Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh

JoVE 52099


 Biology

Induction of Paralysis and Visual System Injury in Mice by T Cells Specific for Neuromyelitis Optica Autoantigen Aquaporin-4

1Department of Neurology, University of California, 2Program in Immunology, University of California, 3Department of Neurology and Neurological Sciences, Stanford University, 4Department of Pathology, Stanford University

JoVE 56185


 Immunology and Infection

Microfluidic Pneumatic Cages: A Novel Approach for In-chip Crystal Trapping, Manipulation and Controlled Chemical Treatment

1Empa - Swiss Federal Laboratories for Materials Science and Technology, 2Institute of Chemical and Bioengineering, Department of Chemistry and Applied Bioscience, ETH Zurich, 3ICN2-Institut Catala de Nanociencia i Nanotecnologia, 4WITec GmbH, 5Institut de Ciència de Materials de Barcelona, 6School of Chemistry, The University of Nottingham

JoVE 54193


 Chemistry

Olfactory Neurons Obtained through Nasal Biopsy Combined with Laser-Capture Microdissection: A Potential Approach to Study Treatment Response in Mental Disorders

1Department of Psychiatry, Johns Hopkins University, 2Department of Psychiatry and Behavioral Sciences, Howard University, 3Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, 4Department of Psychiatry, Sheppard Pratt Hospital, 5Department of Psychiatry, Indiana University

JoVE 51853


 Neuroscience

A New Murine Model of Endovascular Aortic Aneurysm Repair

1INSERM U698 Cardiovascular Remodelling, Hôpital X. Bichat, AP-HP, Paris, 2Bio-Ingénierie des Polymères Cardiovasculaires (BPC), Institut Galilée - Université Paris 13, Paris, France, 3Service de Chirurgie Vasculaire, Hôpital Henri Mondor, AP-HP, Université Paris-Est Creteil, 4Ecole de chirurgie de l'assistance publique des hôpitaux de Paris, 5Service de Chirurgie Cardiaque et Vasculaire, Hôpital Européen Georges Pompidou, AP-HP, Université René Descartes

JoVE 50740


 Medicine

Lymph Node Exam

JoVE 10061

Source: Richard Glickman-Simon, MD, Assistant Professor, Department of Public Health and Community Medicine, Tufts University School of Medicine, MA

The lymphatic system has two main functions: to return extracellular fluid back to the venous circulation and to expose antigenic substances to the immune system. As the collected fluid passes through lymphatic channels on its way back to the systemic circulation, it encounters multiple nodes consisting of highly concentrated clusters of lymphocytes. Most lymph channels and nodes reside deep within the body and, therefore, are not accessible to physical exam (Figure 1). Only nodes near the surface can be inspected or palpated. Lymph nodes are normally invisible, and smaller nodes are also non-palpable. However, larger nodes (>1 cm) in the neck, axillae, and inguinal areas are often detectable as soft, smooth, movable, non-tender, bean-shaped masses imbedded in subcutaneous tissue. Lymphadenopathy usually indicates an infection or, less commonly, a cancer in the area of lymph drainage. Nodes may become enlarged, fixed, firm, and/or tender depending on the pathology present. For example, a soft, tender lymph node palpable near the angle of the mandible may indicate an infected tonsil, whereas a firm, enlarged, non-tender lymph


 Physical Examinations II

The Use of Cystometry in Small Rodents: A Study of Bladder Chemosensation

1Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Belgium, 2Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Belgium, 3TRP Research Platform Leuven (TRPLe), KU Leuven, Belgium

JoVE 3869


 Medicine

12345678978
More Results...