Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section

 
 
Injections, Intraventricular: Injections into the cerebral ventricles.

Transposon Mediated Integration of Plasmid DNA into the Subventricular Zone of Neonatal Mice to Generate Novel Models of Glioblastoma

1Department of Neurosurgery, University of Michigan School of Medicine, 2Department of Pediatrics, Division of Hematology-Oncology, University of Michigan School of Medicine, 3Department of Cell and Developmental Biology, University of Michigan

JoVE 52443


 Medicine

Studying the Hypothalamic Insulin Signal to Peripheral Glucose Intolerance with a Continuous Drug Infusion System into the Mouse Brain

1The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research, 2Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 3TMU research center for Neurotrauma and Neuroregeneration, College of Medical Science and Technology, Taipei Medical University

Video Coming Soon

JoVE 56410


 JoVE In-Press

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Technique to Target Microinjection to the Developing Xenopus Kidney

1Department of Pediatrics, Pediatric Research Center, University of Texas McGovern Medical School, 2Program in Genes & Development, University of Texas Graduate School of Biomedical Sciences, 3Program in Cell & Regulatory Biology, University of Texas Graduate School of Biomedical Sciences, 4Department of Genetics, University of Texas MD Anderson Cancer Center

JoVE 53799


 Developmental Biology

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Subpial Adeno-associated Virus 9 (AAV9) Vector Delivery in Adult Mice

1Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, 2Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 3Department of Neurosurgery, University of California, San Diego, 4Institute of Neurobiology, Slovak Academy of Sciences

JoVE 55770


 Neuroscience

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Preparing and Administering Intramuscular Injections

JoVE 10261

Source: Madeline Lassche, MSNEd, RN and Katie Baraki, MSN, RN, College of Nursing, University of Utah, UT

Intramuscular (IM) injections deposit medications deep into the muscle tissue. Since muscle fibers are well perfused, this route of administration provides quick uptake of the medication and allows for the administration of relatively large volumes. Skeletal muscles have fewer pain-sensing nerves than subcutaneous tissue, which allows for the less painful administration of irritating drugs (e.g., chlorpromazine, an anti-psychotic). IM injections are recommended for patients unable to take oral medications and for uncooperative patients. Some examples of medications that are commonly delivered by IM injections include antibiotics, hormones, and vaccinations. As in any other route of administration, the nurse must consider if the medication is appropriate, given the patient's medical conditions, allergies, and current clinical status. In addition, specifically for IM injections, it is important to assess the patient's muscle mass to determine the appropriate needle size. Also, if the patient has already received this injection, it is necessary to verify the injection site that was previously used and to ensure that the previous dose did not result in any adverse


 Essentials of Nursing Skills

Results below contain some, but not all of your search terms.

Rodent Handling and Restraint Techniques

JoVE 10221

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN 

It has been demonstrated that even minimal handling of mice and rats is stressful to the animals. Handling for cage changing and other noninvasive procedures causes an increase in heart rate, blood pressure, and other physiological parameters, such as serum corticosterone levels. Fluctuations can continue for up to several hours. The methods of restraint required for injections and blood withdrawals also cause physiological changes that can potentially affect scientific data. Training in the proper handling of mice and rats is required to minimize the effects to the animals.1 Mice and rats can be restrained manually with restraint devices, or with chemical agents. Manual methods and the use of restraint devices are covered in this manuscript. All restraint methods include the process of lifting the animals from their home cage.


 Essentials of Lab Animal Research

Results below contain some, but not all of your search terms.

Expression of Fluorescent Proteins in Branchiostoma lanceolatum by mRNA Injection into Unfertilized Oocytes

1Département de Biologie du Développement et Cellules Souches, Institut Pasteur, 2Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR7009 CNRS/UPMC Univ Paris 06), Sorbonne Universités, 3Equipe Epigenetic Control of Normal and Pathological Hematopoiesis, Centre de Recherche en Cancérologie de Marseille, 4Unité de Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS UMR5235/DAA/cc107/Université Montpellier II, 5Plateforme BioEmergences IBiSA FBI, CNRS-NED, Institut de Neurobiologie Alfred Fessard

JoVE 52042


 Developmental Biology

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Deciphering and Imaging Pathogenesis and Cording of Mycobacterium abscessus in Zebrafish Embryos

1Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, UMR 535, Université Montpellier, 2Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, CNRS, FRE 3689, Université Montpellier, 3Unité de Formation et de Recherche des Sciences de la Santé, EA3647-EPIM, Université Versailles St Quentin

JoVE 53130


 Immunology and Infection

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Imaging Subcellular Structures in the Living Zebrafish Embryo

1Institute of Neuronal Cell Biology, Technische Universität München, 2Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3Faculty of Biology, Ludwig-Maximilians-Universität-München, 4Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-Universität-München, 5German Center for Neurodegenerative Diseases, 6Laboratory of Brain Development and Repair, The Rockefeller University

JoVE 53456


 Developmental Biology

Results below contain some, but not all of your search terms.

Compound Administration I

JoVE 10198

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

As many research protocols require that a substance be injected into an animal, the route of delivery and the amount of the substance must be accurately determined. There are several routes of administration available in the mouse and rat. Which route to use is determined by several factors of the substance to be injected: the pH of the solution, the volume required for the desired dosage, and the viscosity of the solution. Severe tissue damage can occur if a substance is administered incorrectly. This video looks at the various restraint methods and technical details for the most commonly used injection routes.


 Essentials of Lab Animal Research

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

In Vivo Model for Testing Effect of Hypoxia on Tumor Metastasis

1Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 2Department of Nursing, Georgetown University, School of Nursing and Health Studies, 3Department of Human Science, Georgetown University, School of Nursing and Health Studies, 4School of Medicine, Georgetown University Medical Center, 5Department of Pathology and Neuropathology, Medical University of Gdańsk, 6Department of Oncology, Georgetown University Medical Center, 7Department of Pathology, Georgetown University Medical Center

JoVE 54532


 Cancer Research

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
12345678914
More Results...