Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal

Filter by science education

 
 
Intracranial Pressure: Pressure within the cranial cavity. It is influenced by brain mass, the circulatory system, Csf dynamics, and skull rigidity.

Automated Midline Shift and Intracranial Pressure Estimation based on Brain CT Images

1Department of Biostatistics, Virginia Commonwealth University, 2Virginia Commonwealth University Reanimation Engineering Science (VCURES) Center, 3Department of Computer Science, Virginia Commonwealth University, 4Department of Radiology, Virginia Commonwealth University, 5Department of Emergency Medicine, Virginia Commonwealth University

JoVE 3871


 Medicine

The Rabbit Blood-shunt Model for the Study of Acute and Late Sequelae of Subarachnoid Hemorrhage: Technical Aspects

1Department of Intensive Care Medicine, University and Bern University Hospital (Inselspital), 2Department of Neurosurgery, Kantonsspital Aarau, 3Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, 4Harvard Medical School, Boston Children's Hospital, 5Department of Neurosurgery, University and Bern University Hospital (Inselspital), 6Department of Neurosurgery, University Hospital Cologne, 7Institute of Pathology, Länggasse Bern

JoVE 52132


 Medicine

Biodegradable Magnesium Stent Treatment of Saccular Aneurysms in a Rat Model - Introduction of the Surgical Technique

1Department of Neurosurgery, Kantonsspital Aarau, 2Neuro Lab, Research Group for Experimental Neurosurgery and Neurocritical Care, Department of Intensive Care Medicine, University Hospital and University of Bern, 3Division of Neuroradiology, Department of Radiology, Kantonsspital Aarau

JoVE 56359


 Neuroscience

Optimized Management of Endovascular Treatment for Acute Ischemic Stroke

1Institute of Neuroradiology, University Medical Center Goettingen, 2Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 3Department of Neurology, University Medical Center Goettingen, 4Department of Epidemiology, Helmholtz Center for Infection Research, 5Institute of Medical Epidemiology, Biostatistics and Informatics, Martin-Luther-University Halle-Wittenberg, 6Department of Anesthesiology, University Medical Center Goettingen

Video Coming Soon

JoVE 56397


 JoVE In-Press

Compound Administration III

JoVE 10215

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

There are many commonly used routes for compound administration in laboratory mice and rats. However, certain protocols may require the use of less commonly used routes, including intradermal, intranasal, and intracranial injections. Specialized training is essential for these procedures to be performed successfully. Justification for these routes may need to be provided to gain Institutional Animal Care and Use Committee (IACUC) approval.


 Lab Animal Research

Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice

1Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, 2Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 3Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, 4Curriculum in Genetics and Molecular Biology, University of North Carolina School of Medicine, 5Biological and Biomedical Sciences Program, University of North Carolina School of Medicine, 6Department of Radiation Oncology, Emory University School of Medicine, 7Department of Neurology, Neurosciences Center, University of North Carolina School of Medicine

JoVE 51763


 Neuroscience

Surgical Training for the Implantation of Neocortical Microelectrode Arrays Using a Formaldehyde-fixed Human Cadaver Model

1Wyss Center for Bio and Neuroengineering, Geneva, 2Division of Neurology, Department of Clinical Neuroscience, Geneva University Hospitals, 3Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 4Division of Neurosurgery, Department of Clinical Neuroscience, Geneva University Hospitals, 5Clinical Anatomy Research Group, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva

JoVE 56584


 Medicine

State of the Art Cranial Ultrasound Imaging in Neonates

1Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, 2Department of Radiology, Erasmus MC-Sophia Children's Hospital, 3Department of Pediatrics, Division of Neonatology, UZ Brussel, 4Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, 5Department of Pediatrics, Division of Neonatology, Isala Hospital, 6Department of Pediatrics, Koningin Paola Children's Hospital

JoVE 52238


 Medicine

Description of a Novel, Surgically Implanted Neuromodulatory Technique Known As Bilateral Epidural Prefrontal Cortical Stimulation (Epcs) for Treatment-Resistant Depression (TRD)

1Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 2Department of Neurosciences, Medical University of South Carolina, 3Ralph H. Johnson VA Medical Center, 4Department of Psychiatry and Behavioral Sciences, Stanford University, 5American University of Beirut Medical Center

Video Coming Soon

JoVE 56043


 JoVE In-Press

Adult Mouse Venous Hypertension Model: Common Carotid Artery to External Jugular Vein Anastomosis.

1Department of Anesthesia and Perioperative Care and Center for Cerebrovascular Research, University of California, San Francisco, 2Department of Neurological Surgery, University of California, San Francisco, 3Department of Neurology, University of California, San Francisco

JoVE 50472


 Medicine

Performing Permanent Distal Middle Cerebral with Common Carotid Artery Occlusion in Aged Rats to Study Cortical Ischemia with Sustained Disability

1Wolfson Centre for Age-Related Diseases, King's College London, University of London, 2Department of Neuroimaging, James Black Centre, Institute of Psychiatry, King's College London, University of London, 3Institute of Neuroscience and Psychology, Wellcome Surgical Institute, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, 4Research Service, Edward Hines Jr. VA Hospital, 5Neurology Service, Edward Hines Jr. VA Hospital, 6Department of Molecular Pharmacology and Therapeutics, Neuroscience Research Institute, Loyola University Chicago, 7Department of Oncology, The Gray Institute for Radiation, Oncology and Biology, University of Oxford

JoVE 53106


 Medicine

Prehospital Thrombolysis: A Manual from Berlin

1Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, 2Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, 3Medical School of the Universität Hamburg, Universitätsklinikum Hamburg - Eppendorf, 4Berliner Feuerwehr, 5STEMO-Consortium

JoVE 50534


 Medicine

Cranial Nerves Exam I (I-VI)

JoVE 10091

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

During each section of the neurological testing, the examiner uses the powers of observation to assess the patient. In some cases, cranial nerve dysfunction is readily apparent: a patient might mention a characteristic chief complaint (such as loss of smell or diplopia), or a visually evident physical sign of cranial nerve involvement, such as in facial nerve palsy. However, in many cases a patient's history doesn't directly suggest cranial nerve pathologies, as some of them (such as sixth nerve palsy) may have subtle manifestations and can only be uncovered by a careful neurological exam. Importantly, a variety of pathological conditions that are associated with alterations in mental status (such as some neurodegenerative disorders or brain lesions) can also cause cranial nerve dysfunction; therefore, any abnormal findings during a mental status exam should prompt a careful and complete neurological exam. The cranial nerve examination is applied neuroanatomy. The cranial nerves are symmetrical; therefore, while performing the examination, the examiner should compare each side to the other. A physician should approach the examination in a


 Physical Examinations III

An Improved Method for Collection of Cerebrospinal Fluid from Anesthetized Mice

1Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, 2Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, 3Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, 4Sino-Danish Center for Education and Research (SDC), 5Department of Neurology, Xinhua Hospital Chongming Branch Affiliated to Shanghai Jiao Tong University School of Medicine, 6Department of Nuclear Medicine and PET-centre, Aarhus University Hospital

Video Coming Soon

JoVE 56774


 JoVE In-Press

Establishing Mouse Models for Zika Virus-induced Neurological Disorders Using Intracerebral Injection Strategies: Embryonic, Neonatal, and Adult

1Biomedical and Health Sciences Institute, University of Georgia, 2Center for Craniofacial Molecular Biology, University of Southern California, 3Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia

Video Coming Soon

JoVE 56486


 JoVE In-Press

Visualization of Vascular and Parenchymal Regeneration after 70% Partial Hepatectomy in Normal Mice

1Department of General, Visceral and Vascular Surgery, Jena University Hospital, 2Experimental Molecular Imaging, RWTH Aachen University, 3Fraunhofer Institute for Medical Image Computing MEVIS, 4Institute of Pathology, Klinikum Chemnitz gGmbH

JoVE 53935


 Medicine

Compound Administration I

JoVE 10198

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

As many research protocols require that a substance be injected into an animal, the route of delivery and the amount of the substance must be accurately determined. There are several routes of administration available in the mouse and rat. Which route to use is determined by several factors of the substance to be injected: the pH of the solution, the volume required for the desired dosage, and the viscosity of the solution. Severe tissue damage can occur if a substance is administered incorrectly. This video looks at the various restraint methods and technical details for the most commonly used injection routes.


 Lab Animal Research

Flat-floored Air-lifted Platform: A New Method for Combining Behavior with Microscopy or Electrophysiology on Awake Freely Moving Rodents

1Neuroscience Center, University of Helsinki, 2Neurotar LTD, 3A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 4Laboratory Animal Center, University of Helsinki

JoVE 51869


 Behavior

Non-restraining EEG Radiotelemetry: Epidural and Deep Intracerebral Stereotaxic EEG Electrode Placement

1Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), 2Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE)

JoVE 54216


 Neuroscience

12345678955
More Results...