Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section

 
 
Lung Diseases, Obstructive: Any disorder marked by obstruction of conducting airways of the lung. Airway obstruction may be acute, chronic, intermittent, or persistent.

Human Lung Dendritic Cells: Spatial Distribution and Phenotypic Identification in Endobronchial Biopsies Using Immunohistochemistry and Flow Cytometry

1Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, 2Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University, 3Divison of Infectious Diseases, Department of Clinical Microbiology, Umeå University

JoVE 55222


 Immunology and Infection

An IL-8 Transiently Transgenized Mouse Model for the In Vivo Long-term Monitoring of Inflammatory Responses

1Department of Medicine, General Pathology Division, Cystic Fibrosis Translational Research Laboratory "D. Lissandrini", University of Verona, 2Corporate Preclinical R&D, Chiesi Farmaceutici S.p.A., 3Department of Diagnostic and Public Health, Microbiology Division, University of Verona, 4Dipartimento di Scienze Medico-Veterinarie, University of Parma, 5Department of Biomedical Biotechnological and Translational Sciences, University of Parma, 6Department of Computer Science, University of Verona, 7Department of Neurological, Biomedical and Movement Sciences, University of Verona, 8Cystic Fibrosis Regional Center (CFC), AOUI Verona

JoVE 55499


 Immunology and Infection

Right Ventricular Systolic Pressure Measurements in Combination with Harvest of Lung and Immune Tissue Samples in Mice

1Department of Environmental Medicine, New York University School of Medicine, Tuxedo, 2Division of Allergy, Pulmonary, & Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, 3Division of Pulmonary Medicine, New York University School of Medicine

JoVE 50023


 Immunology and Infection

Respiratory Exam I: Inspection and Palpation

JoVE 10028

Source: Suneel Dhand, MD, Attending Physician, Internal Medicine, Beth Israel Deaconess Medical Center

Disorders of the respiratory system with a chief complaint of shortness of breath are among the most common reasons for both outpatient and inpatient evaluation. The most obvious visible clue to a respiratory problem will be whether the patient is displaying any signs of respiratory distress, such as fast respiratory rate and/or cyanosis. In a clinical situation, this will always require emergent attention and oxygen therapy. Unlike pathology in other body systems, many pulmonary disorders, including chronic obstructive pulmonary disease (COPD), asthma, and pneumonia, can be diagnosed by careful clinical examination alone. This starts with a comprehensive inspection and palpation. Keep in mind that in non-emergency situations the patient's complete history will have been taken already, gaining important insight into exposure histories (e.g., smoking), which could give rise to specific lung diseases. This history can then confirm physical findings as the examination is performed.


 Essentials of Physical Examinations I

Adapting the Electrospinning Process to Provide Three Unique Environments for a Tri-layered In Vitro Model of the Airway Wall

1Division of Drug Delivery and Tissue Engineering, University of Nottingham, 2Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, 3Division of Immunology and Allergy, School of Molecular Medical Sciences, University of Nottingham, 4Division of Respiratory Medicine, School of Clinical Sciences, University of Nottingham, 5NIHR Respiratory Biomedical Research Unit, University of Leicester, 6School of Sport, Exercise, and Health Sciences, Loughborough University

JoVE 52986


 Bioengineering

Cecal Ligation and Puncture-induced Sepsis as a Model To Study Autophagy in Mice

1Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 2Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 3First Department of Critical Care Medicine and Pulmonary Services, University of Athens Medical School, Evangelismos Hospital, Athens, Greece

JoVE 51066


 Immunology and Infection

Percussion

JoVE 10136

Source: Jaideep S. Talwalkar, MD, Internal Medicine and Pediatrics, Yale School of Medicine, New Haven, CT

Simply stated, percussion refers to the striking of one object against another to produce sound. In the early 1700s, an Austrian inn-keeper's son, named Leopold Auenbrugger, discovered that he could take inventory by tapping his father's beer barrels with his fingers. Years later, while practicing medicine in Vienna, he applied this technique to his patients and published the first description of the diagnostic utility of percussion in 1761. His findings faded into obscurity until the prominent French physician Jean-Nicolas Corvisart rediscovered his writings in 1808, during an era in which great attention was focused on diagnostic accuracy at the bedside.1 There are three types of percussion. Auenbrugger and Corvisart relied on direct percussion, in which the plexor (i.e. tapping) finger strikes directly against the patient's body. An indirect method is used more commonly today. In indirect percussion, the plexor finger strikes a pleximeter, which is typically the middle finger of the non-dominant hand placed against the patient's body. As the examiner's finger strikes the pleximeter (or directly against the surface of the patient's body)


 Essentials of Physical Examinations I

Endothelialized Microfluidics for Studying Microvascular Interactions in Hematologic Diseases

1Department of Pediatrics, Emory University School of Medicine, 2Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 3Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, 4Winship Cancer Institute of Emory University

JoVE 3958


 Bioengineering

Cardiopulmonary Bypass in a Mouse Model: A Novel Approach

1Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, 2Department of Hematology, Oncology, Immunology, Rheumatology, and Pulmonology, University Hospital Tuebingen, 3Department of Pneumology, Hannover Medical School

Video Coming Soon

JoVE 56017


 JoVE In-Press

Using In Vivo and Tissue and Cell Explant Approaches to Study the Morphogenesis and Pathogenesis of the Embryonic and Perinatal Aorta

1Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 2Department of Neurology, Yale University School of Medicine, 3Department of Neurology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine

Video Coming Soon

JoVE 56039


 JoVE In-Press

Results below contain some, but not all of your search terms.

Automated Measurement of Pulmonary Emphysema and Small Airway Remodeling in Cigarette Smoke-exposed Mice

1Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital - Harvard Medical School, 2Department of Respiratory Medicine, University of Cambridge - Addenbrooke's Hospital, 3Lung Transplant Program, Brigham and Women's Hospital - Harvard Medical School, 4COPD and IPF Programs, Lovelace Respiratory Research Institute

JoVE 52236


 Medicine

Results below contain some, but not all of your search terms.

Chronic Thromboembolic Pulmonary Hypertension and Assessment of Right Ventricular Function in the Piglet

1Surgical Research Lab, Marie Lannelongue Hospital, 2Department of Pathology, Marie Lannelongue Hospital, 3Department of Thoracic and Vascular Surgery, Marie Lannelongue Hospital, 4Thoracic and Cardiovascular Surgery, University Hospital of Rennes, 5INSERM U999 Paris-Sud University

JoVE 53133


 Medicine

Results below contain some, but not all of your search terms.

Assessment of Pulmonary Capillary Blood Volume, Membrane Diffusing Capacity, and Intrapulmonary Arteriovenous Anastomoses During Exercise

1Division of Pulmonary Medicine, University of Alberta, 2Faculty of Physical Education and Recreation, University of Alberta, 3Divisions of Critical Care and Cardiology, University of Alberta, 4Faculty of Rehabilitation Medicine, University of Alberta, 5G.F. MacDonald Centre for Lung Health

JoVE 54949


 Medicine

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Method of Isolated Ex Vivo Lung Perfusion in a Rat Model: Lessons Learned from Developing a Rat EVLP Program

1Department of Biomedical Engineering, Ohio State University Wexner Medical Center, 2Davis Heart & Lung Research Institute, Ohio State University Wexner Medical Center, 3The Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Laboratory, Ohio State University Wexner Medical Center, 4Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, 5Departments of Pediatrics and Internal Medicine, Ohio State University, 6Advanced Lung Disease Program, Lung and Heart-Lung Transplant Programs, Nationwide Children's Hospital, 7Division of Transplantation, Department of Surgery, Ohio State University Wexner Medical Center

JoVE 52309


 Medicine

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Respiratory Exam II: Percussion and Auscultation

JoVE 10041

Source: Suneel Dhand, MD, Attending Physician, Internal Medicine, Beth Israel Deaconess Medical Center

Learning the proper technique for percussion and auscultation of the respiratory system is vital and comes with practice on real patients. Percussion is a useful skill that is often skipped during everyday clinical practice, but if performed correctly, it can help the physician to identify underlying lung pathology. Auscultation can provide an almost immediate diagnosis for a number of acute pulmonary conditions, including chronic obstructive pulmonary disease (COPD), asthma, pneumonia, and pneumothorax. The areas for auscultating the lungs correspond to the lung zones. Each lung lobe can be pictured underneath the chest wall during percussion and auscultation (Figure 1). The right lung has three lobes: the superior, middle, and inferior lobes. The left lung has two lobes: the superior and inferior lobes. The superior lobe of the left lung also has a separate projection known as the lingual. Figure 1. Anatomy of lungs with respect to the chest wall. An approximate projection of lungs and their fissures and lobes


 Essentials of Physical Examinations I

Results below contain some, but not all of your search terms.

Analysis of 18FDG PET/CT Imaging as a Tool for Studying Mycobacterium tuberculosis Infection and Treatment in Non-human Primates

1Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 2Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center

Video Coming Soon

JoVE 56375


 JoVE In-Press

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Long-term High-Resolution Intravital Microscopy in the Lung with a Vacuum Stabilized Imaging Window

1Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 2Department of Obstetrics/Gynecology and Woman’s Health, Albert Einstein College of Medicine, 3Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, 4Gruss-Lipper Biophotonics Center Integrated Imaging Program, Albert Einstein College of Medicine, 5Medical Research Council Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh

JoVE 54603


 Cancer Research

12345678948
More Results...