Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Metals, Heavy: Metals with high specific gravity, typically larger than 5. They have complex spectra, form colored salts and double salts, have a low electrode potential, are mainly amphoteric, yield weak bases and weak acids, and are oxidizing or reducing agents (From Grant & Hackh's Chemical Dictionary, 5th ed)

Two-way Valorization of Blast Furnace Slag: Synthesis of Precipitated Calcium Carbonate and Zeolitic Heavy Metal Adsorbent

1Department of Offshore, Process and Energy Engineering, Cranfield University, 2School of Applied Chemical and Environmental Sciences, Sheridan College Institute of Technology and Advanced Learning, 3School of Engineering, University of Guelph, 4Carbon Systems Engineering, Centre for Combustion, Carbon Capture and Storage, Cranfield University

JoVE 55062


 Engineering

Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor

1Bioprocesses Department, Laboratory of Environmental Biotechnology, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, 2Laboratory of Molecular Biology, Escuela Superior de Medicina, Instituto Politécnico Nacional

JoVE 52956


 Environment

Removal of Trace Elements by Cupric Oxide Nanoparticles from Uranium In Situ Recovery Bleed Water and Its Effect on Cell Viability

1Division of Physical Therapy, Department of Orthopedics & Rehabilitation, University of New Mexico, 2Department of Ecosystem Science and Management, University of Wyoming, 3School of Pharmacy, University of Wyoming, 4Department of Environmental and Radiological Health Sciences, Colorado State University, 5Center for Environmental Medicine, Colorado State University, 6College of Pharmacy, California Northstate University

JoVE 52715


 Environment

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries Using Synchrotron Radiation Techniques

1Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 2Department of Chemistry, University of Illinois at Chicago, 3Stanford Synchrotron Radiation Lightsource, 4Haldor Topsøe A/S, 5PolyPlus Battery Company

JoVE 50594


 Engineering

Sample Preparation for Analytical Characterization

JoVE 10205

Source: Laboratory of Dr. B. Jill Venton - University of Virginia

Sample preparation is the way in which a sample is treated to prepare for analysis. Careful sample preparation is critical in analytical chemistry to accurately generate either a standard or unknown sample for a chemical measurement. Errors in analytical chemistry methods are categorized as random or systematic. Random errors are errors due to change and are often due to noise in instrument. Systematic errors are due to investigator or instrumental bias, which introduces an offset in the measured value. Errors in sample preparation are systematic errors, which will propagate through analysis, causing uncertainty or inaccuracies through improper calibration curves. Systematic errors can be eliminated through correct sample preparation and proper use of the instrument. Poor sample preparation can also sometimes cause harm to the instrument.


 Analytical Chemistry

Fabrication of a Dipole-assisted Solid Phase Extraction Microchip for Trace Metal Analysis in Water Samples

1Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 2Center for Measurement Standards, Industrial Technology Research Institute, 3National Synchrotron Radiation Research Center, 4Department of Chemistry, National Changhua University of Education

JoVE 53500


 Bioengineering

Essential Metal Uptake in Gram-Negative Bacteria: X-Ray Fluorescence, Radioisotopes, and Cell Fractionation

1Graduate Biomedical Sciences Microbiology Theme, University of Alabama at Birmingham, 2Department of Radiology, University of Alabama at Birmingham, 3Office of the Provost, University of Alabama at Birmingham, 4Department of Pharmacology and Toxicology, University of Alabama at Birmingham

Video Coming Soon

JoVE 57169


 JoVE In-Press

Lead Analysis of Soil Using Atomic Absorption Spectroscopy

JoVE 10021

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

Lead occurs naturally in soil, in levels ranging from 10-50 ppm. However, with the widespread use of lead in paint and gasoline in addition to contamination by industry, urban soils often have concentrations of lead significantly greater than background levels – up to 10,000 ppm in some places. Ongoing problems arise from the fact that lead does not biodegrade, and instead remains in the soil. Serious health risks are associated with lead poisoning, where children are particularly at risk. Millions of children in the U.S. are exposed to soil containing lead. This exposure can cause developmental and behavioral problems in children. These problems include learning disabilities, inattention, delayed growth, and brain damage. The Environmental Protection Agency has set a standard for lead in soil at 400 ppm for play areas and 1,200 ppm for non-play areas. Lead is also of concern in soil, when it’s used for gardening. Plants take up lead from the soil. Therefore, vegetables or herbs grown in contaminated soil can lead to lead poisoning. In addition, contaminated soil particles can be breathed in while gardening or brought into the house on clothing and footwear. It is recommended that s


 Environmental Science

Quantitative Magnetic Resonance Imaging of Skeletal Muscle Disease

1Institute of Imaging Science, Vanderbilt University, 2Department of Radiology and Radiological Sciences, Vanderbilt University, 3Department of Biomedical Engineering, Vanderbilt University, 4Department of Molecular Physiology and Biophysics, Vanderbilt University, 5Department of Physical Medicine and Rehabilitation, Vanderbilt University, 6Department of Physics and Astronomy, Vanderbilt University

JoVE 52352


 Medicine

Schlenk Lines Transfer of Solvents

JoVE 5679

Source: Hsin-Chun Chiu and Tyler J. Morin, laboratory of Dr. Ian Tonks—University of Minnesota Twin Cities

Schlenk lines and high vacuum lines are both used to exclude moisture and oxygen from reactions by running reactions under a slight overpressure of inert gas (usually N2 or Ar) or under vacuum. Vacuum transfer has been developed as a method separate solvents (other volatile reagents) from drying agents (or other nonvolatile agents) and dispense them to reaction or storage vessels while maintaining an air-free environment. Similar to thermal distillations, vacuum transfer separates solvents by vaporizing and condensing them in another receiving vessel; however, vacuum transfers utilize the low pressure in the manifolds of Schlenk and high vacuum lines to lower boiling points to room temperature or below, allowing for cryogenic distillations. This technique can provide a safer alternative to thermal distillation for the collection of air- and moisture-free solvents. After the vacuum transfer, the water content of the collected solvent can be tested quantitatively by Karl Fischer titration, qualitatively by titration with a Na/Ph2CO solution, or by 1H NMR spectroscopy.


 Organic Chemistry

Measurement of Maximum Isometric Force Generated by Permeabilized Skeletal Muscle Fibers

1Department of Orthopaedic Surgery, University of Michigan Medical School, 2Department of Molecular & Integrative Physiology, University of Michigan Medical School, 3Department of Biomedical Engineering, University of Michigan Medical School, 4Department of Surgery, Section of Plastic Surgery, University of Michigan Medical School

JoVE 52695


 Bioengineering

Extraction and Analysis of Microbial Phospholipid Fatty Acids in Soils

1Department of Renewable Resources, University of Alberta, 2Department of Science, Augustana Faculty, University of Alberta, 3Laboratoire Génie Civil et géo-Environnement, Université de Lille, 4Department of Earth and Environmental Sciences, Mount Royal University, 5Forest Ecology & Production, Great Lakes Forestry Centre, Natural Resources Canada

JoVE 54360


 Environment

Methods for Analyzing the Impacts of Natural Uranium on In Vitro Osteoclastogenesis

1UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Université Nice Sophia-Antipolis, 2UMR 7272 Institut de Chimie de Nice CNRS, Université Nice Sophia-Antipolis, 3CEA, Direction de la Recherche Fondamentale (DRF), Biosciences and Biotechnologies Institute (BIAM)

Video Coming Soon

JoVE 56499


 JoVE In-Press

Guidelines in Case of an Laboratory Emergency

JoVE 10379

Robert M. Rioux & Zhifeng Chen, Pennsylvania State University, University Park, PA

The most common laboratory emergencies include chemical spills, fire or explosion, electric shock, and personnel injuries. Most laboratory accidents occur due to poor planning or lack of attention. Therefore, it's always better to prevent accidents (being proactive) than having to take any actions during an emergency (being reactive). For example, always wear proper personal protective equipment (PPE) in the laboratory. Regular laboratory inspection and equipment maintenance is beneficial to prevent laboratory accidents. However, once the emergency occurs, it's also essential to know what to do. Ensure your personal safety first and then call local emergency responders, when and if necessary. The extent of your response will depend on the seriousness of the incident and documented laboratory protocols for dealing with such incidents. Stay calm and take proper actions according to the type and level of emergency.


 Lab Safety

Methods of Soil Resampling to Monitor Changes in the Chemical Concentrations of Forest Soils

1New York Water Science Center, U.S. Geological Survey, 2School of Forest Resources, University of Maine, 3Natural Resources Canada, Canadian Forest Service, 4Northern Research Station, U.S. Forest Service, 5Department of Plant and Soil Science, University of Vermont, 6Ottauquechee NRCD, USDA Natural Resources Conservation Service, 7Green Mountain National Forest, U.S. Forest Service, 8Direction de la Recherche Forestière, Ministère du Québec, 9Department of Civil and Environmental Engineering, Syracuse University, 10Division of Environmental Science, SUNY College of Environmental Science and Forestry, 11White Mountain National Forest, U.S. Forest Service, 12Natural Resources and Earth System Sciences, University of New Hampshire, 13Greenwich, NY Field Office, USDA Natural Resources Conservation Service

JoVE 54815


 Environment

A Murine Model of Stent Implantation in the Carotid Artery for the Study of Restenosis

1Institute for Molecular Cardiovascular Research, RWTH Aachen University, 2Institute for Textile Technology and Mechanical Engineering, RWTH Aachen University, 3Institute for Applied Medical Engineering, Helmholtz-Institute of RWTH Aachen University, 4Department of Experimental Molecular Imaging, RWTH Aachen University, 5Department of Oral and Maxillofacila Surgery, RWTH Aachen University

JoVE 50233


 Medicine

Failure Analysis of Batteries Using Synchrotron-based Hard X-ray Microtomography

1Department of Materials Science and Engineering, University of California Berkeley, 2Materials Science Division, Lawrence Berkeley National Laboratory, 3Advanced Light Source Division, Lawrence Berkeley National Laboratory, 4Department of Chemical and Biomolecular Engineering, University of California Berkeley, 5Environmental Energy Technology Division, Lawrence Berkeley National Laboratory

JoVE 53021


 Engineering

12345678916
More Results...