Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal

Filter by science education

 
 
Mice, Hairless: Mutant strains of mice that produce little or no hair.

Blood Withdrawal II

JoVE 10247

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

The collection of blood from mice and rats for analysis can be done through a variety of methods. Each method of collection has variations in the type of restraint required, the invasiveness of the procedure, and the necessity of a general anesthetic.1Historically, the use of the retro-orbital sinus cavity has been used, but not without debate. The controversy related to the potential tissue damage,or even blindness,caused by retro-orbital bleeds has led to the development of facial and submandibular vein bleeding methods in mice.Blood collection from the saphenous vein in both mice and rats is another technique that has been developed. These procedures do not require anesthesia and therefore are suitable when the use of anesthetics may confound blood results or other data.


 Lab Animal Research

Compound Administration I

JoVE 10198

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

As many research protocols require that a substance be injected into an animal, the route of delivery and the amount of the substance must be accurately determined. There are several routes of administration available in the mouse and rat. Which route to use is determined by several factors of the substance to be injected: the pH of the solution, the volume required for the desired dosage, and the viscosity of the solution. Severe tissue damage can occur if a substance is administered incorrectly. This video looks at the various restraint methods and technical details for the most commonly used injection routes.


 Lab Animal Research

Use of the Operant Orofacial Pain Assessment Device (OPAD) to Measure Changes in Nociceptive Behavior

1Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, 2Department of Neuroscience, McKnight Brain Institute, University of Florida College of Medicine, 3Stoelting Co., 4Department of Orthodontics, University of Florida

JoVE 50336


 Behavior

Fundamentals of Breeding and Weaning

JoVE 10293

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

Millions of mice and rats are bred for use in biomedical research each year. Worldwide, there are several large commercial breeding facilities that supply mice to research laboratories, but many facilities choose to also breed mice and rats in-house to reduce costs and increase research options. When breeding in the animal facility, researchers are able to manipulate the genetics of the animals, time the pregnancies to meet the needs of the research, and work with embryos and neonates as required. Mice and rats can be bred in a variety of schemes and methods. Technical procedures, such as the use of vaginal cytology, visualization of the vaginal area, and observation of copulatory plugs, have been developed to assist with the synchronization of breeding to correspond to research requirements. This manuscript is an overview of the basic fundamentals of mouse and rat breeding and technical procedures used. More detailed descriptions of the complex breeding schemes, and the full description of the methods for vaginal cytology, are available in the list of references.


 Lab Animal Research

An Introduction to the Laboratory Mouse: Mus musculus

JoVE 5129

Mice (Mus musculus) are an important research tool for modeling human disease progression and development in the lab. Despite differences in their size and appearance, mice share a distinct genetic similarity to humans, and their ability to reproduce and mature quickly make them efficient and economical candidate mammals for scientific study.

This video provides a brief overview of mice, both as organisms and in terms of their many advantages as experimental models. The discussion features an introduction to common laboratory mouse strains, including the nude mouse, whose genetic makeup renders them both hairless and immunodeficient. A brief history of mouse research is also offered, ranging from their first use in genetics experiments to Nobel prize-winning discoveries in immunology and neurobiology. Finally, representative examples of the diverse types of research that can be performed in mice are presented, such as classic behavioral tests like the Morris water maze and in-depth investigations of mammalian embryonic development.


 Biology II

Murine Full-thickness Skin Transplantation

1Sidney-Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 2Department of Liver and Transplantation Surgery, Chang-Gung Transplantation Institute, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, 3Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine

JoVE 55105


 Immunology and Infection

Development and Reproduction of the Laboratory Mouse

JoVE 5159

Successful breeding of the laboratory mouse (Mus musculus) is critical to the establishment and maintenance of a productive animal colony. Additionally, mouse embryos are frequently studied to answer questions about developmental processes. A wide variety of genetic tools now exist for regulating gene expression during mouse embryonic and postnatal development, which can help scientists to understand more about heritable diseases affecting human development. This video provides an introduction to the reproduction and development of mice. In addition to clarifying the terminology used to describe developmental progression, the presentation reviews key stages of the mouse life cycle. First, major development events that take place in utero are described, with special attention given to the unique layout of early rodent embryos. Next, husbandry protocols are provided for postnatal mice, or pups, including the process of weaning, or removal of pups from their mother's cage. Since males and females must be separated at this stage to prevent unscheduled mating, the demonstration also reveals how to determine mouse sex. Subsequently, instructions are given for carrying out controlled mouse breeding, including screening for the copulatory plug, which is useful for precisely timed embryonic development. Finally, the video highlights strategies used to in


 Biology II

Using Bioluminescent Imaging to Investigate Synergism Between Streptococcus pneumoniae and Influenza A Virus in Infant Mice

1Department of Microbiology and Immunology, University of Melbourne, 2Laboratory of Pediatric Infectious Diseases, Radboud University Nijmegen Medical Centre, 3The Centre for Dynamic Imaging, The Walter and Eliza Hall Institute for Medical Research

JoVE 2357


 Immunology and Infection

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Morris Water Maze Test: Optimization for Mouse Strain and Testing Environment

1Department of Psychology, Behavioral Neuroscience, West Virginia University, 2Department of Physiology and Pharmacology, West Virginia University, 3Department of Neurology, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, 4Department of Neuroscience, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, 5GRECC, VA Medical Center, 6Center for Neuroscience, Center for Basic and Translational Stroke Research, West Virginia University

JoVE 52706


 Behavior

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Adapting Human Videofluoroscopic Swallow Study Methods to Detect and Characterize Dysphagia in Murine Disease Models

1Department of Otolaryngology - Head and Neck Surgery, University of Missouri, 2Department of Communication Science and Disorders, University of Missouri, 3Department of Medicine, University of Missouri

JoVE 52319


 Medicine

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Contextual and Cued Fear Conditioning Test Using a Video Analyzing System in Mice

1Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 2Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology (CREST), 3Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences

JoVE 50871


 Behavior

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Recording Mouse Ultrasonic Vocalizations to Evaluate Social Communication

1Human Genetics and Cognitive Functions, University Paris Diderot, CNRS UMR 3571, Institut Pasteur, 2Neurophysiology and Behavior, University Pierre et Marie Curie Paris 6, CNRS UMR 7102, 3Bio Image Analysis, CNRS URA 2582, Institut Pasteur

JoVE 53871


 Behavior

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Calcification of Vascular Smooth Muscle Cells and Imaging of Aortic Calcification and Inflammation

1Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, 2Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, 3Cardiovascular Division, Brigham and Women's Hospital, 4Harvard Medical School, 5Department of Anesthesiology, Uniklinik RWTH Aachen, RWTH Aachen University, 6Center for Immunology and Inflammatory Diseases and the Division of Rheumatology, Allergy, and Immunology of the Department of Medicine, Massachusetts General Hospital

JoVE 54017


 Medicine

Results below contain some, but not all of your search terms.

Induction of Paralysis and Visual System Injury in Mice by T Cells Specific for Neuromyelitis Optica Autoantigen Aquaporin-4

1Department of Neurology, University of California, 2Program in Immunology, University of California, 3Department of Neurology and Neurological Sciences, Stanford University, 4Department of Pathology, Stanford University

JoVE 56185


 Immunology and Infection

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Preparing and Administering Topical Medications

JoVE 10259

Source: Madeline Lassche, MSNEd, RN and Katie Baraki, MSN, RN, College of Nursing, University of Utah, UT

Topical medications are applied directly to the body surfaces, including the skin and mucous membranes of the eyes, ears, nose, vagina, and rectum. There are many classes of topical medications, such as creams, ointments, lotions, patches, and aerosol sprays. Medications that are applied to the skin to produce slow, controlled, systemic effect are also referred to as transdermal. Transdermal absorption can be altered if lesions, burns, or breakdowns are present at the application site. Many transdermal medications are delivered via adhesive patch to achieve the slow, controlled, systemic effect. The patch should be applied to clean and hairless skin areas that do not undergo excessive movement, such as the back of the shoulder or thigh. Other topical creams or eye ointments should be applied according to the packaging and manufacturer instructions using an application device. When instilling eardrop medications, never occlude the ear canal, as this may increase pressure and rupture the ear drum. Medications that can be administered via a topical route include antibiotics, narcotics, hormones, and even chemotherapeutics. This requires adherence to the five "rights" of medicati


 Nursing Skills

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
12345678950
More Results...