Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Microscopy, Electron, Scanning: Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although Scanning transmission electron microscopy also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of Transmission electron microscopy.
 JoVE Biology

Scanning Electron Microscopy (SEM) Protocols for Problematic Plant, Oomycete, and Fungal Samples

1Biodiversity and Conservation Department, Real Jardín Botánico, CSIC, 2Research Support Unit, Real Jardín Botánico, CSIC, 3Mycology Department, Real Jardín Botánico, CSIC, 4Division of Glycoscience, AlbaNova University Center, Royal Institute of Technology (KTH)


JoVE 55031

 JoVE Biology

Scanning Electron Microscopy of Macerated Tissue to Visualize the Extracellular Matrix

1Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 2Department of Medicine, Vanderbilt University Medical Center, 3Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 4Cardiovascular Institute, Maine Medical Center


JoVE 54005

 Science Education: Essentials of Analytical Chemistry

Scanning Electron Microscopy (SEM)

JoVE Science Education

Source: Laboratory of Dr. Andrew J. Steckl — University of Cincinnati

A scanning electron microscope, or SEM, is a powerful microscope that uses electrons to form an image. It allows for imaging of conductive samples at magnifications that cannot be achieved using traditional microscopes. Modern light microscopes can achieve a magnification of ~1,000X, while typical SEM can reach magnifications of more than 30,000X. Because the SEM doesn’t use light to create images, the resulting pictures it forms are in black and white.  Conductive samples are loaded onto the SEM’s sample stage. Once the sample chamber reaches vacuum, the user will proceed to align the electron gun in the system to the proper location. The electron gun shoots out a beam of high-energy electrons, which travel through a combination of lenses and apertures and eventually hit the sample. As the electron gun continues to shoot electrons at a precise position on the sample, secondary electrons will bounce off of the sample. These secondary electrons are identified by the detector. The signal found from the secondary electrons is amplified and sent to the monitor, creating a 3D image. This video will demonstrate SEM sample preparation, operation, and imaging capabilities.

 JoVE Bioengineering

From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data

1Life Sciences Division, Lawrence Berkeley National Laboratory, 2Joint Bioenergy Institute, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 3National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory


JoVE 51673

 JoVE In-Press

The C. elegans Intestine as a Model for Inter-cellular Lumen Morphogenesis and in Vivo polarized Membrane Biogenesis at the Single-cell Level

1Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School, 2College of Life Sciences, Jilin University, 3Faculty of Health Sciences, University of Macau

Video Coming Soon

JoVE 56100

 JoVE Engineering

Characterization of Ultra-fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction

1School of Civil Engineering, The University of Sydney, 2Australian Centre for Microscopy and Microanalysis, The University of Sydney, 3Department of Earth and Planetary Sciences, Macquarie University, 4Charles Delaunay Institute, LASMIS, UMR STMR CNRS 6281, University of Technology of Troyes


JoVE 55506

 JoVE Bioengineering

Correlative Light- and Electron Microscopy Using Quantum Dot Nanoparticles

1South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales Australia, 2School of Medicine, Western Sydney University, 3Correlative Microscopy Group, Ingham Institute for Applied Medical Research, 4Electron Microscopy Laboratory, Department of Anatomical Pathology, Sydney South West Pathology Service, New South Wales Health Pathology, 5School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia


JoVE 54307

 JoVE In-Press

Correlative Super-Resolution and Electron Microscopy to Resolve Protein Localization in Zebrafish Retina

1Center for Microscopy and Image Analysis, University of Zurich, 2Institute for Molecular Life Sciences, University of Zurich, 3Institute for Medical Genetics, University of Zurich

Video Coming Soon

JoVE 56113

 JoVE Medicine

Preparation and In Vitro Characterization of Magnetized miR-modified Endothelial Cells

1Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, 2Physikalisch-Technische Bundesanstalt, 3Department of Radiology and Neuroradiology, Ernst-Moritz-Arndt-University Greifswald, 4Electron Microscopy Center, University of Rostock


JoVE 55567

 JoVE In-Press

The C. Elegans Excretory Canal as a Model for Intra-cellular Lumen Morphogenesis and In Vivo Polarized Membrane Biogenesis in a Single Cell

1Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School, 2College of Life Sciences, Jilin University, 3Faculty of Health Sciences, University of Macau

Video Coming Soon

JoVE 56101

 JoVE Immunology and Infection

A New Method for Qualitative Multi-scale Analysis of Bacterial Biofilms on Filamentous Fungal Colonies Using Confocal and Electron Microscopy

1Interactions Arbres – Microorganismes, UMR1136, INRA Université de Lorraine, 2Ecologie et Ecophysiologie Forestières - PTEF, UMR 1137, INRA Université de Lorraine, 3Biosciences Division, Oak Ridge National Laboratory


JoVE 54771

 JoVE Bioengineering

Generation of Scalable, Metallic High-Aspect Ratio Nanocomposites in a Biological Liquid Medium

1Biophysics Department, Centenary College of Louisiana, 2Department of Chemistry, Louisiana Tech University, 3Department of Integrative Physiology, University of North Texas Health Sciences Center, 4Biomedical Engineering, Louisiana Tech University, 5Institute for Micromanufacturing, Louisiana Tech University


JoVE 52901

 JoVE Neuroscience

Preparation of Primary Neurons for Visualizing Neurites in a Frozen-hydrated State Using Cryo-Electron Tomography

1Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 2Department of Neuroscience, Baylor College of Medicine, 3Department of Neuroscience, University of California at San Diego, 4National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine


JoVE 50783

 JoVE In-Press

Imaging the Root Hair Morphology of Arabidopsis Seedlings in a Two-layer Microfluidic Platform

1Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, 2Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, 3Biosciences Division, Oak Ridge National Laboratory, 4Bioscience Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 5Bredesen Center for Interdisciplinary Research, University of Tennessee

Video Coming Soon

JoVE 55971

12345678964
More Results...
Waiting
simple hit counter