Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal

Filter by science education

 
 

Morris Water Maze Test: Optimization for Mouse Strain and Testing Environment

1Department of Psychology, Behavioral Neuroscience, West Virginia University, 2Department of Physiology and Pharmacology, West Virginia University, 3Department of Neurology, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, 4Department of Neuroscience, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, 5GRECC, VA Medical Center, 6Center for Neuroscience, Center for Basic and Translational Stroke Research, West Virginia University

JoVE 52706


 Behavior

The Morris Water Maze

JoVE 5211

The Morris water maze is one of the most widely used behavioral tests for studying spatial learning and memory. In the initial phases of this task, rodents must swim to a platform to escape from a pool of water. The platform is then hidden under the water’s surface, so that the animal is required to remember it’s location in order to escape.This simple yet powerful maze design can be used to assay cognitive function, study animal models of neurodegenerative disease, and test potential drug therapies. This video provides an introduction to the Morris water maze and the principles surrounding its use, including a discussion of the different types of memory tested in the maze, important points to consider when designing and conducting this experiment, and the procedures for setup and running of the test. Several applications of the maze are examined, such as investigating how radiation treatment may lead to memory impairment. Finally, other types of water mazes, such as the 8-arm radial maze, are introduced to show how this paradigm can be adapted to engage different types of memory.


 Neuroscience

Utilizing the Modified T-Maze to Assess Functional Memory Outcomes After Cardiac Arrest

1Department of Neurology, Louisiana State University Health Science Center, 2Center for Brain Health, Louisiana State University Health Science Center, 3Department of Cellular Biology and Anatomy, Louisiana State University Health Science Center, 4Department of Neurology, Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, 5Department of Biomedical Sciences, West Virginia Medicine Osteopathic of School

Video Coming Soon

JoVE 56694


 JoVE In-Press

Low-stress Route Learning Using the Lashley III Maze in Mice

1Department of Chemistry, Pennsylvania State University, 2Center for Developmental and Health Genetics, Pennsylvania State University, 3Department of Veterinary and Biomedical Sciences, Pennsylvania State University, 4Huck Institute of the Life Sciences, Pennsylvania State University, 5California NanoSystems Institute, University of California, Los Angeles, 6Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles

JoVE 1786


 Neuroscience

Spatial Memory Testing Using Mazes

JoVE 5418

Spatial learning and memory are neurological functions that allow us to remember important details associated with our environment. Scientists test this phenomenon in rodents using different types of mazes like Morris water maze, Radial water maze, and Barnes maze. By investigating spatial memory in rodents, neurobehavioral scientists can gain valuable understanding of how these processes are altered following brain damage in humans. Here, the neurobiology behind spatial memory is briefly reviewed and some general principles behind maze tests are discussed. Then, the video explains generalized protocols on how to conduct trials with specific types of mazes. Lastly, it will explain how behavioral researchers are using these tools to conduct some specific experiments.


 Behavioral Science

Lateral Fluid Percussion: Model of Traumatic Brain Injury in Mice

1Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 2Spinal Cord and Brain Injury Research Center, 3Department of Anatomy and Neurobiology, Department of Physical Medicine and Rehabilitation, University of Kentucky Chandler Medical Center

JoVE 3063


 Neuroscience

An Introduction to the Laboratory Mouse: Mus musculus

JoVE 5129

Mice (Mus musculus) are an important research tool for modeling human disease progression and development in the lab. Despite differences in their size and appearance, mice share a distinct genetic similarity to humans, and their ability to reproduce and mature quickly make them efficient and economical candidate mammals for scientific study.

This video provides a brief overview of mice, both as organisms and in terms of their many advantages as experimental models. The discussion features an introduction to common laboratory mouse strains, including the nude mouse, whose genetic makeup renders them both hairless and immunodeficient. A brief history of mouse research is also offered, ranging from their first use in genetics experiments to Nobel prize-winning discoveries in immunology and neurobiology. Finally, representative examples of the diverse types of research that can be performed in mice are presented, such as classic behavioral tests like the Morris water maze and in-depth investigations of mammalian embryonic development.


 Biology II

Use of a Piglet Model for the Study of Anesthetic-induced Developmental Neurotoxicity (AIDN): A Translational Neuroscience Approach

1Department of Anesthesiology, Ohio State University College of Medicine, 2Department of Anesthesiology and Pain Medicine, Nationwide Children's Hospital, 3Department of Anaesthesia and Critical Care Medicine, University of Toronto, 4Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, 5Department of Pathology and Anatomy, Ohio State University College of Medicine, 6Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital

JoVE 55193


 Medicine

An Introduction to Behavioral Neuroscience

JoVE 5210

Behavioral neuroscience is the study of how the nervous system guides behavior, and how the various functional areas and networks within the brain correlate to specific behaviors and disease states. Researchers in this field utilize a wide variety of experimental methods ranging from complex animal training techniques to sophisticated imaging experiments in human subjects. This video first offers a historical overview of some of the major milestones that lead to our current understanding of the brain’s control over behavior. Then, some of the fundamental questions asked by behavioral neuroscientists are presented, which all involve the study of neural correlates, or specific brain regions whose activation is responsible for a given function. Next, prominent methods used to answer those questions are reviewed for both human and animal subjects, such as operant conditioning and functional neuroimaging. Finally, experimental applications of these techniques are presented, including animal training using a Skinner box, and the use of electroencephalography to investigate human neurological disease.


 Neuroscience

123456789108
More Results...