Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Motor Activity: The physical activity of a human or an animal as a behavioral phenomenon.

Using TMS to Measure Motor Excitability During Action Observation

JoVE 10270

Source: Laboratories of Jonas T. Kaplan and Sarah I. Gimbel—University of Southern California

Transcranial Magnetic Stimulation (TMS) is a non-invasive brain stimulation technique that involves passing current through an insulated coil placed against the scalp. A brief magnetic field is created by current in the coil, and because of the physical process of induction, this leads to a current in the nearby neural tissue. Depending on the duration, frequency, and magnitude of these magnetic pulses, the underlying neural circuitry can be affected in many different ways. Here, we demonstrate the technique of single-pulse TMS, in which one brief magnetic pulse is used to stimulate the neocortex. One observable effect of TMS is that it can produce muscle twitches when applied over the motor cortex. Due to the somatotopic organization of the motor cortex, different muscles can be targeted depending on the precise placement of the coil. The electrical signals that cause these muscle twitches, called motor evoked potentials, or MEPs, can be recorded and quantified by electrodes placed on the skin over the targeted muscle. The amplitude of MEPs can be interpreted to reflect the underlying excitability of the motor cortex; for example, when the motor cortex is activated, observed MEPs are larger.


 Neuropsychology

Online Transcranial Magnetic Stimulation Protocol for Measuring Cortical Physiology Associated with Response Inhibition

1College of Medicine, University of Cincinnati, 2Division of Neurology, Cincinnati Children's Hospital Medical Center, 3Division of Psychiatry, Cincinnati Children's Hospital Medical Center, 4Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute

Video Coming Soon

JoVE 56789


 JoVE In-Press

Biosensing Motor Neuron Membrane Potential in Live Zebrafish Embryos

1Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 2Department of Neuroscience; Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, 3Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 4Department of BioSciences, Università degli Studi di Milano

JoVE 55297


 Developmental Biology

Adapting Human Videofluoroscopic Swallow Study Methods to Detect and Characterize Dysphagia in Murine Disease Models

1Department of Otolaryngology - Head and Neck Surgery, University of Missouri, 2Department of Communication Science and Disorders, University of Missouri, 3Department of Medicine, University of Missouri

JoVE 52319


 Medicine

A Method for Quantifying Upper Limb Performance in Daily Life Using Accelerometers

1Program in Physical Therapy, Washington University School of Medicine, 2Program in Occupational Therapy, Washington University School of Medicine, 3Department of Neurology, Washington University School of Medicine, 4Mallinckrodt Institute of Radiology, Washington University School of Medicine, 5Department of Biomedical Engineering, Washington University

JoVE 55673


 Medicine

An Introduction to Motor Control

JoVE 5422

Motor control involves integration and processing of sensory information by our nervous system, followed by a response through our skeletal system to perform a voluntary or involuntary action. It is vital to understand how our neuroskeletal system controls motor behavior in order to evaluate injuries pertaining to general movement, reflexes, and coordination. An improved understanding of motor control will help behavioral neuroscientists in developing useful tools to treat motor disorders, such as Parkinson's or Huntington's disease. This video briefly reviews the neuroanatomical structures and connections that play a major role in controlling motion. Fundamental questions currently being asked in the field of motor control are introduced, followed by some of the methods being employed to answer those questions. Lastly, the application sections reviews a few specific experiments conducted in neuroscience labs interested in studying this phenomenon.


 Behavioral Science

Non-restraining EEG Radiotelemetry: Epidural and Deep Intracerebral Stereotaxic EEG Electrode Placement

1Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), 2Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE)

JoVE 54216


 Neuroscience

Assessment of Dopaminergic Homeostasis in Mice by Use of High-performance Liquid Chromatography Analysis and Synaptosomal Dopamine Uptake

1Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen and Department of Neuroscience and Pharmacology, University of Copenhagen

JoVE 56093


 Neuroscience

Systematic Assessment of Well-Being in Mice for Procedures Using General Anesthesia

1Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, 2Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, 3Federal Institute for Risk Assessment (BfR), 4Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine

Video Coming Soon

JoVE 57046


 JoVE In-Press

Measuring Physiological Responses of Drosophila Sensory Neurons to Lipid Pheromones Using Live Calcium Imaging

1Temasek Life Sciences Laboratory, 2Department of Biological Science, National University of Singapore, 3Bioimaging and Biocomputing Facility, Temasek Life Sciences Laboratory, 4Histology and Light Microscopy Core, Gladstone Institutes, 5Pacific Biosciences Research Center, University of Hawai'i at Mānoa

JoVE 53392


 Immunology and Infection

Antibody Binding Specificity for Kappa (Vκ) Light Chain-containing Human (IgM) Antibodies: Polysialic Acid (PSA) Attached to NCAM as a Case Study

1Department of Neurology, Mayo Clinic, 2Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 3Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic, 4Division of Neonatal Medicine, Mayo Clinic, 5Department of Pediatric and Adolescent Medicine, Mayo Clinic

JoVE 54139


 Immunology and Infection

12
More Results...