Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education

Movement Disorders: Syndromes which feature Dyskinesias as a cardinal manifestation of the disease process. Included in this category are degenerative, hereditary, post-infectious, medication-induced, post-inflammatory, and post-traumatic conditions.

High-throughput Analysis of Locomotor Behavior in the Drosophila Island Assay

1Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 2Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 3Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center

JoVE 55892


Motor Exam II

JoVE 10095

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

There are two main types of reflexes that are tested on a neurological examination: stretch (or deep tendon reflexes) and superficial reflexes. A deep tendon reflex (DTR) results from the stimulation of a stretch-sensitive afferent from a neuromuscular spindle, which, via a single synapse, stimulates a motor nerve leading to a muscle contraction. DTRs are increased in chronic upper motor neuron lesions (lesions of the pyramidal tract) and decreased in lower motor neuron lesions and nerve and muscle disorders. There is a wide variation of responses and reflexes graded from 0 to 4+ (Table 1). DTRs are commonly tested to help localize neurologic disorders. A common method of recording findings during the DTR examination is using a stick figure diagram. The DTR test can help distinguish upper and lower motor neuron problems, and can assist in localizing nerve root compression as well. Although the DTR of nearly any skeletal muscle could be tested, the reflexes that are routinely tested are: brachioradialis, biceps, triceps, patellar, and Achilles (Table 2). Superficial reflexes are segmental ref

 Physical Examinations III

Combined Invasive Subcortical and Non-invasive Surface Neurophysiological Recordings for the Assessment of Cognitive and Emotional Functions in Humans

1Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, 2Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf, 3Department of Neurosurgery, Functional Neurosurgery and Stereotaxy, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf

JoVE 53466


Clinical-oriented Three-dimensional Gait Analysis Method for Evaluating Gait Disorder

1Department of Rehabilitation Medicine, School of Medicine, Fujita Health University, 2Faculty of Rehabilitation, School of Health Science, Fujita Health University, 3Department of Rehabilitation, Fujita Health University Hospital, 4Department of Advanced Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine

JoVE 57063


Description of a Novel, Surgically Implanted Neuromodulatory Technique Known As Bilateral Epidural Prefrontal Cortical Stimulation (Epcs) for Treatment-Resistant Depression (TRD)

1Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 2Department of Neurosciences, Medical University of South Carolina, 3Ralph H. Johnson VA Medical Center, 4Department of Psychiatry and Behavioral Sciences, Stanford University, 5American University of Beirut Medical Center

Video Coming Soon

JoVE 56043

 JoVE In-Press

Motor Exam I

JoVE 10052

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

Abnormalities in the motor function are associated with a wide range of diseases, from movement disorders and myopathies to strokes. The motor assessment starts with observation of the patient. When the patient enters the examination area, the clinician observes the patient's ability to walk unassisted and the speed and coordination while moving. Taking the patient's history provides an additional opportunity to observe for evidence of tremors or other abnormal movements, such as chorea or tardive dyskinesia. Such simple but important observations can yield valuable clues to the diagnosis and help to focus the rest of the examination. The motor assessment continues in a systematic fashion, including inspection for muscle atrophy and abnormal movements, assessment of muscle tone, muscle strength testing, and finally the examination of the muscle reflexes and coordination. The careful systematic testing of the motor system and the integration of all the findings provide insight to the level at which the motor pathway is affected, and also help the clinician to formulate the differential diagnosis and determine the course of the subsequent evaluation and treatment.

 Physical Examinations III

Movement-Related Changes in Cortico-Pallidal Coupling Revealed by Simultaneous Intracranial and Magnetoencephalography Recordings in Dystonia Patients

1Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, 2Department of Neurosurgery, Charité - Universitätsmedizin Berlin, 3Physikalisch-Technische Bundesanstalt, Institut Berlin

Video Coming Soon

JoVE 56659

 JoVE In-Press

Recording Horizontal Saccade Performances Accurately in Neurological Patients Using Electro-oculogram

1Department of Cell Physiology, Kyorin University, 2Segawa Memorial Neurological Clinic for Children, 3Department of Neurology, University of Tokyo, 4Department of Neurology, Kyorin University, 5Department of Neurology, Fukushima Medical University

JoVE 56934


Measurement & Analysis of the Temporal Discrimination Threshold Applied to Cervical Dystonia

1School of Engineering, Trinity College Dublin, The University of Dublin, 2Department of Neurology, St. Vincent's University Hospital, 3School of Medicine and Medical Sciences, University College Dublin, 4School of Mathematical Sciences, Dublin Institute of Technology, 5School of Medicine Trinity College Dublin, The University of Dublin

JoVE 56310


Targeted Next-generation Sequencing and Bioinformatics Pipeline to Evaluate Genetic Determinants of Constitutional Disease

1Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 2Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, 3Analytic and Translational Genetics Unit, Center for Genomic Medicine, Harvard Medical School, Massachusetts General Hospital, Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, 4Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 5School of Medicine, Faculty of Health Sciences, Queen's University, 6Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 7CHEO Research Institute, Faculty of Medicine, University of Ottawa, 8Department of Clinical Neurological Sciences, Western University, 9Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, 10Division of Neurology, Department of Medicine, University of Toronto, 11Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, 12Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, 13Parkwood Institute, St. Joseph's Health Care, 14Department of Medicine, Division of Neurology, McMaster University, 15Division of Neurology, Department of Medicine, Baycrest Health Sciences, 16Canadian Partnership for Stroke Recovery Sunnybrook Site, Sunnybrook Health Science Centre, University of Toronto

Video Coming Soon

JoVE 57266

 JoVE In-Press

An Introduction to Motor Control

JoVE 5422

Motor control involves integration and processing of sensory information by our nervous system, followed by a response through our skeletal system to perform a voluntary or involuntary action. It is vital to understand how our neuroskeletal system controls motor behavior in order to evaluate injuries pertaining to general movement, reflexes, and coordination. An improved understanding of motor control will help behavioral neuroscientists in developing useful tools to treat motor disorders, such as Parkinson's or Huntington's disease. This video briefly reviews the neuroanatomical structures and connections that play a major role in controlling motion. Fundamental questions currently being asked in the field of motor control are introduced, followed by some of the methods being employed to answer those questions. Lastly, the application sections reviews a few specific experiments conducted in neuroscience labs interested in studying this phenomenon.

 Behavioral Science

Purification of Transcripts and Metabolites from Drosophila Heads

1Department of Neurology, McKnight Brain Institute, University of Florida, 2Department of Entomology and Nematology, University of Florida, 3Genetics Institute, Department of Molecular Genetics and Microbiology, University of Florida, 4McKnight Brain Institute, Department of Neuroscience, Genetics Institute, Center for Translational Research on Neurodegenerative Diseases, and Center for Movement Disorders and Neurorestoration, University of Florida

JoVE 50245


Balance and Coordination Testing

JoVE 5423

Balance and coordination are critical components involved in the control of movement. Many sensory receptors and neural processing units are required to help individuals maintain balance while performing various activities. Deficits in balance and coordination occur in patients suffering from movement disorders or due to aging. Therefore, scientists are trying to understand the pathophysiology behind these conditions. One way to do that is by using rodent models and testing them on behavioral paradigms such as the rotarod or balance beam. This video discusses the currently known neurophysiology behind balance and coordination. Then, we go over protocols to run balance tests in rodents using the rotarod and balance beam. Finally, we'll discuss some current studies utilizing these methods to investigate aging, muscular dystrophy and Parkinson's disease.

 Behavioral Science

Transplantation of Schwann Cells Inside PVDF-TrFE Conduits to Bridge Transected Rat Spinal Cord Stumps to Promote Axon Regeneration Across the Gap

1The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 2Department of Materials Science and Engineering, New Jersey Institute of Technology, 3Department of Biomedical Engineering, New Jersey Institute of Technology, 4Department of Cell Biology, University of Miami Miller School of Medicine, 5Department of Neurological Surgery, University of Miami Miller School of Medicine

JoVE 56077


More Results...