Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Multiprotein Complexes: Macromolecular complexes formed from the association of defined protein subunits.

CN-GELFrEE - Clear Native Gel-eluted Liquid Fraction Entrapment Electrophoresis

1Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2Institute of Chemistry, Proteomics Unit, Federal University of Rio de Janeiro, 3Department of Cell Biology, Brazilian Center for Protein Research, Laboratory of Biochemistry and Protein Chemistry, University of Brasilia

JoVE 53597


 Chemistry

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Molecular Orbital (MO) Theory

JoVE 10447

Source: Tamara M. Powers, Department of Chemistry, Texas A&M University

This protocol serves as a guide in the synthesis of two metal complexes featuring the ligand 1,1'-bis(diphenylphosphino)ferrocene (dppf): M(dppf)Cl2, where M = Ni or Pd. While both of these transition metal complexes are 4-coordinate, they exhibit different geometries at the metal center. Using molecular orbital (MO) theory in conjunction with 1H NMR and Evans method, we will determine the geometry of these two compounds.


 Inorganic Chemistry

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Preparation of Giant Vesicles Exhibiting Visible-light-induced Morphological Changes

1Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan, 2Department of Applied Physics, School of Applied Science, National Defense Academy of Japan, 3Department of Materials Science and Technology, Faculty of Engineering, Niigata University

Video Coming Soon

JoVE 54817


 JoVE In-Press

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Quadruply Metal-Metal Bonded Paddlewheels

JoVE 10441

Source: Corey Burns, Tamara M. Powers, Department of Chemistry, Texas A&M University

Paddlewheel complexes are a class of compounds comprised of two metal ions (1st, 2nd, or 3rd row transition metals) held in proximity by four bridging ligands (most commonly formamidinates or carboxylates) (Figure 1). Varying the identity of the metal ion and the bridging ligand provides access to large families of paddlewheel complexes. The structure of paddlewheel complexes allows for metal-metal bonding, which plays a vital role in the structure and reactivity of these complexes. Due to the diversity of electronic structures that are available to paddlewheel complexes - and the corresponding differences in M-M bonding displayed by these structures - paddlewheel complexes have found application in diverse areas, such as in homogeneous catalysis and as building blocks for metal-organic frameworks (MOFs). Understanding the electronic structure of the M-M bonds in paddlewheel complexes is critical to understanding their structures and thus to application of these complexes in coordination chemistry and catalysis. Figure 1. General structure of paddlewheel complexes, wh


 Inorganic Chemistry

Results below contain some, but not all of your search terms.

Coordination Chemistry Complexes

JoVE 10179

Source: Laboratory of Dr. Neal Abrams — SUNY College of Environmental Science and Forestry

Transition metals are found everywhere from vitamin supplements to electroplating baths. Transition metals also make up the pigments in many paints and compose all minerals. Typically, transition metals are found in the cationic form since they readily oxidize, or lose electrons, and are surrounded by electron donors called ligands. These ligands do not form ionic or covalent bonds with the metal center, rather they take on a third type of bond known as coordinate-covalent. The coordinate-covalent bond between a ligand and a metal is dynamic, meaning that ligands are continuously exchanging and re-coordinating around the metal center. The identities of both the metal and the ligand dictates which ligands will bond preferentially over another. In addition, color and magnetic properties are also due to the types of complexes that are formed. The coordination compounds that form are analyzed using a variety of instruments and tools. This experiment explores why so many complexes are possible and uses a spectrochemical (color and chemical) method to help identify the type of coordination complex that forms.


 General Chemistry

Results below contain some, but not all of your search terms.

Preparation and In Vitro Characterization of Magnetized miR-modified Endothelial Cells

1Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, 2Physikalisch-Technische Bundesanstalt, 3Department of Radiology and Neuroradiology, Ernst-Moritz-Arndt-University Greifswald, 4Electron Microscopy Center, University of Rostock

JoVE 55567


 Medicine

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

The Evans Method

JoVE 10304

Source: Tamara M. Powers, Department of Chemistry, Texas A&M University 

While most organic molecules are diamagnetic, wherein all their electrons are paired up in bonds, many transition metal complexes are paramagnetic, which has ground states with unpaired electrons. Recall Hund's rule, which states that for orbitals of similar energies, electrons will fill the orbitals to maximize the number of unpaired electrons before pairing up. Transition metals have partially populated d-orbitals whose energies are perturbed to varying extents by coordination of ligands to the metal. Thus, the d-orbitals are similar in energy to one another, but are not all degenerate. This allows for complexes to be diamagnetic, with all electrons paired up, or paramagnetic, with unpaired electrons. Knowing the number of unpaired electrons in a metal complex can provide clues into the oxidation-state and geometry of the metal complex, as well as into the ligand field (crystal field) strength of the ligands. These properties greatly impact the spectroscopy and reactivity of transition metal complexes, and so are important to understand. One way to count the number of unpaired electrons is to measure the magnetic susceptibility, χ, of the coordinatio


 Inorganic Chemistry

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
12345678917
More Results...