Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Nervous System: The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed)

Development of the Chick

JoVE 5155

The chicken embryo (Gallus gallus domesticus) provides an economical and accessible model for developmental biology research. Chicks develop rapidly and are amenable to genetic and physiological manipulations, allowing researchers to investigate developmental pathways down to the cell and molecular levels.


This video review of chick development begins by describing the…

 Biology II

Chromatin Immunoprecipitation

JoVE 5551

Histones are proteins that help organize DNA in eukaryotic nuclei by serving as “scaffolds” around which DNA can be wrapped, forming a complex called “chromatin”. These proteins can be modified through the addition of chemical groups, and these changes affect gene expression. Researchers use a technique called chromatin immunoprecipitation (ChIP) to …

 Genetics

Visualization of Knee Joint Degeneration after Non-invasive ACL Injury in Rats

JoVE 10477

Source: Lindsey K. Lepley1,2, Steven M. Davi1, Timothy A. Butterfield3,4 and Sina Shahbazmohamadi5,


1Department of Kinesiology, University of Connecticut, Storrs, CT; 2Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT; 3Department of Rehabilitation Sciences, University of Kentucky,…

 Biomedical Engineering

Detecting Reactive Oxygen Species

JoVE 5654

Reactive oxygen species are chemically active, oxygen-derived molecules capable of oxidizing other molecules. Because of their reactive nature, there are many deleterious effects associated with unchecked ROS production, including structural damage to DNA and other biological molecules. However, ROS can also be mediators of physiological signaling. There is accumulating…

 Cell Biology

Tissue Regeneration with Somatic Stem Cells

JoVE 5339

Somatic or adult stem cells, like embryonic stem cells, are capable of self-renewal but demonstrate a restricted differentiation potential. Nonetheless, these cells are crucial to homeostatic processes and play an important role in tissue repair. By studying and manipulating this cell population, scientist may be able to develop new regenerative therapies for injuries and diseases.


 Developmental Biology

An Introduction to Organogenesis

JoVE 5334

Organogenesis is the process by which organs arise from one of three germ layers during the later stages of embryonic development. Researchers studying organogenesis want to better understand the genetic programs, cell-cell interactions, and mechanical forces involved in this process. Ultimately, scientists hope to use this knowledge to create therapies and artificial organs that will help…

 Developmental Biology

An Introduction to Stem Cell Biology

JoVE 5331

Cells that can differentiate into a variety of cell types, known as stem cells, are at the center of one of the most exciting fields of science today. Stem cell biologists are working to understand the basic mechanisms that regulate how these cells function. These researchers are also interested in harnessing the remarkable potential of stem cells to treat human diseases.


Here,…

 Developmental Biology

Development and Reproduction of the Laboratory Mouse

JoVE 5159

Successful breeding of the laboratory mouse (Mus musculus) is critical to the establishment and maintenance of a productive animal colony. Additionally, mouse embryos are frequently studied to answer questions about developmental processes. A wide variety of genetic tools now exist for regulating gene expression during mouse embryonic and postnatal development, which can help…

 Biology II

Drosophila Development and Reproduction

JoVE 5093

One of the many reasons that make Drosophila an extremely valuable organism is that the molecular, cellular, and genetic foundations of development are highly conserved between flies and higher eukaryotes such as humans. Drosophila progress through several developmental stages in a process known as the life cycle and each stage provides a unique platform for developmental…

 Biology I

The Synapse

JoVE 10997

Neurons communicate with one another by passing on their electrical signals to other neurons. A synapse is the location where two neurons meet to exchange signals. At the synapse, the neuron that sends the signal is called the presynaptic cell, while the neuron that receives the message is called the postsynaptic cell. Note that most neurons can be both presynaptic and postsynaptic, as they both transmit and receive information. An electrical synapse is one type of synapse in which the pre- and postsynaptic cells are physically coupled by proteins called gap junctions. This allows electrical signals to be directly transmitted to the postsynaptic cell. One feature of these synapses is that they can transmit electrical signals extremely quickly—sometimes at a fraction of a millisecond—and do not require any energy input. This is often useful in circuits that are part of escape behaviors, such as that found in the crayfish that couples the sensation of a predator with the activation of the motor response. In contrast, transmission at chemical synapses is a stepwise process. When an action potential reaches the end of the axonal terminal, voltage-gated calcium channels open and allows calcium ions to enter. These ions trigger fusion of neurotransmitter-containing vesicles with the cellular membrane, releasing neurotransmitters into the small space

 Core: Biology

Feedback Loops

JoVE 10878

In most cases, excessive hormone production is prevented by negative feedback—a loop that starts with a stimulus inducing the release of a particular substance, like a hormone, to maintain a certain level before triggering a signal that results in a decrease in further release of the hormone.

For example, an increase in blood glucose levels releases the hormone insulin from beta cells of the pancreas into the bloodstream, delivering insulin to cells throughout the body. Insulin stimulates cells to take up glucose and use it for energy production. Insulin also converts and stores excess glucose as glycogen in the liver. Collectively, these actions lower blood glucose levels, and in turn, signals the pancreas to stop producing insulin. When blood glucose levels fall below normal, for example during exercise, alpha cells of the pancreas release the hormone glucagon. Glucagon converts glycogen stored in the liver to glucose, which can then be used by other cells in the body for energy production. Glucagon also stimulates the liver to absorb amino acids from blood and convert them to glucose. An increase in blood glucose levels then signals the pancreas to stop releasing glucagon via negative feedback regulation.

 Core: Biology

Skeletal Muscle Anatomy

JoVE 10867

Skeletal muscle is the most abundant type of muscle in the body. Tendons are the connective tissue that attaches skeletal muscle to bones. Skeletal muscles pull on tendons, which in turn pull on bones to carry out voluntary movements.

Skeletal muscles are surrounded by a layer of connective tissue called epimysium, which helps protect the muscle. Beneath the epimysium, an additional layer of connective tissue, called perimysium, surrounds and groups together subunits of skeletal muscle called fasciculi. Each fascicle is a bundle of skeletal muscle cells, or myocytes, which are often called skeletal muscle fibers due to their size and cylindrical appearance. Between the muscle fibers is an additional layer of connective tissue called endomysium. The muscle fiber membrane is called the sarcolemma. Each muscle fiber is made up of multiple rod-like chains called myofibrils, which extend across the length of the muscle fiber and contract. Myofibrils contain subunits called sarcomeres, which are made up of actin and myosin in thin and thick filaments, respectively. Actin contains myosin-binding sites that allow thin and thick filaments to connect, forming cross bridges. For a muscle to contract, accessory proteins that cover myosin-binding sites on thin filaments must be displaced to enable the formation of cross bridges. During muscle contracti

 Core: Biology

Eye Exam

JoVE 10149

Source: Richard Glickman-Simon, MD, Assistant Professor, Department of Public Health and Community Medicine, Tufts University School of Medicine, MA


Proper evaluation of the eyes in a general practice setting involves vision testing, orbit inspection, and ophthalmoscopic examination. Before beginning the exam, it is crucial to be familiar…

 Physical Examinations II

Blood Pressure Measurement

JoVE 10083

Source: Meghan Fashjian, ACNP-BC, Beth Israel Deaconess Medical Center, Boston MA


The term blood pressure (BP) describes lateral pressures produced by blood upon the vessel walls. BP is a vital sign obtained routinely in hospital and outpatient settings, and is one of the most common medical assessments performed around…

 Physical Examinations I

Measuring Tropospheric Ozone

JoVE 10024

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University


Ozone is a form of elemental oxygen (O3), a molecule of three oxygen atoms bonded in a structure that is highly reactive as an oxidizing agent. Ozone occurs in both the stratosphere and the troposphere levels of the atmosphere. When in the stratosphere (located…

 Environmental Science

An Introduction to Aging and Regeneration

JoVE 5337

Tissues are maintained through a balance of cellular aging and regeneration. Aging refers to the gradual loss of cellular function, and regeneration is the repair of damaged tissue generally mediated by preexisting adult or somatic stem cells. Scientists are interested in understanding the biological mechanisms behind these two complex processes. By doing so, researchers may be able to use…

 Developmental Biology

Zebrafish Reproduction and Development

JoVE 5151

The zebrafish (Danio rerio) has become a popular model for studying genetics and developmental biology. The transparency of these animals at early developmental stages permits the direct visualization of tissue morphogenesis at the cellular level. Furthermore, zebrafish are amenable to genetic manipulation, allowing researchers to determine the effect of gene expression on the…

 Biology II

Three-dimensional Tissue Engineered Aligned Astrocyte Networks to Recapitulate Developmental Mechanisms and Facilitate Nervous System Regeneration

1Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 2Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, 3School of Biomedical Engineering, Drexel University, 4Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 5Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania

JoVE 55848

 Bioengineering

Anatomically Inspired Three-dimensional Micro-tissue Engineered Neural Networks for Nervous System Reconstruction, Modulation, and Modeling

1Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 2Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, 4School of Biomedical Engineering, Drexel University

JoVE 55609

 Neuroscience

In vivo Optogenetic Stimulation of the Rodent Central Nervous System

1Department of Psychiatry, University of Pittsburgh Medical Center, 2Department of Bioengineering, Stanford University, 3Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 4Department of Neurobiology and Behavior, Cornell University, 5Department of Psychiatry and Behavioral Sciences, Stanford University

JoVE 51483

 Neuroscience

Generation of 3-D Collagen-based Hydrogels to Analyze Axonal Growth and Behavior During Nervous System Development

1Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, 2Department of Cell Biology, Physiology, and Immunology, Universitat de Barcelona, 3Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 4Institute of Neuroscience, University of Barcelona

JoVE 59481

 Neuroscience

A Brain Tumor/Organotypic Slice Co-culture System for Studying Tumor Microenvironment and Targeted Drug Therapies

1Department of Cancer Biology, Dana-Farber Cancer Institute, 2Department of Pediatrics, Children's Hospital, 3Department of Biostatistics & Computational Biology, Dana-Farber Cancer Institute, 4Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, 5Department of Neurosurgery, Children's Hospital, 6Center for Molecular Oncologic Pathology, Department of Medical Oncology, Dana-Farber Cancer Institute

JoVE 53304

 Medicine

Determining Immune System Suppression versus CNS Protection for Pharmacological Interventions in Autoimmune Demyelination

1Physical Medicine and Rehabilitation, University of Alabama at Birmingham, 2Department of Pathology, University of Alabama at Birmingham, 3Department of Neurobiology, University of Alabama at Birmingham, 4Center for Glial Biology and Medicine, University of Alabama at Birmingham

JoVE 54348

 Immunology and Infection

Implementation of a Coherent Anti-Stokes Raman Scattering (CARS) System on a Ti:Sapphire and OPO Laser Based Standard Laser Scanning Microscope

1INSERM U1051, Institut des Neurosciences de Montpellier (INM), Université de Montpellier, 2Université de Nîmes, 3CNRS, IES, UMR 5214, 4Aix-Marseille Université, CNRS, École Centrale Marseille, Institut Fresnel, UMR 7249, 5Montpellier RIO Imaging (MRI)

JoVE 54262

 Biology

Induction of Paralysis and Visual System Injury in Mice by T Cells Specific for Neuromyelitis Optica Autoantigen Aquaporin-4

1Department of Neurology, University of California, 2Program in Immunology, University of California, 3Department of Neurology and Neurological Sciences, Stanford University, 4Department of Pathology, Stanford University

JoVE 56185

 Immunology and Infection

Automated Slide Scanning and Segmentation in Fluorescently-labeled Tissues Using a Widefield High-content Analysis System

1Department of Clinical Neurosciences, Arnie Charbonneau Cancer Institute, University of Calgary, 2Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, 3Department of Oncology, Hotchkiss Brain Institute, University of Calgary

JoVE 57440

 Bioengineering

An Enzyme- and Serum-free Neural Stem Cell Culture Model for EMT Investigation Suited for Drug Discovery

1Dept. of Biomedicine, Pharmacenter, University of Basel, 2Molecular Signalling and Gene Therapy, Narayana Nethralaya Foundation, Narayana Health City, 3Brain Ischemia and Regeneration, Department of Biomedicine, University Hospital Basel, 4Department of Neurosurgery, Klinikum Idar-Oberstein, 5Department of Neurosurgery and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, 6Department of Neurology, Laboratory of Molecular Neuro Oncology, University Hospital of Zurich

JoVE 54018

 Developmental Biology

Lentiviral Vector Platform for the Efficient Delivery of Epigenome-editing Tools into Human Induced Pluripotent Stem Cell-derived Disease Models

1Department of Neurology, Duke University Medical Center, 2Center for Genomic and Computational Biology, Duke University Medical Center, 3Viral Vector Core, Duke University Medical Center, 4Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center

JoVE 59241

 Genetics

Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation

1Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, 2Department of Biology, University of Konstanz, 3Department of Statistics, Technical University of Dortmund, 4Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund

JoVE 52333

 Developmental Biology

In Vitro Recording of Mesenteric Afferent Nerve Activity in Mouse Jejunal and Colonic Segments

1Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, 2Visceral Pain Group, Discipline of Medicine, University of Adelaide, 3Department of Biomedical Sciences, University of Sheffield, 4Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire, 5Department of Gastroenterology and Hepatology, Antwerp University Hospital

JoVE 54576

 Neuroscience
12345678926
More Results...