Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education

Nervous System: The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed)

Antibody Binding Specificity for Kappa (Vκ) Light Chain-containing Human (IgM) Antibodies: Polysialic Acid (PSA) Attached to NCAM as a Case Study

1Department of Neurology, Mayo Clinic, 2Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 3Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic, 4Division of Neonatal Medicine, Mayo Clinic, 5Department of Pediatric and Adolescent Medicine, Mayo Clinic

JoVE 54139

 Immunology and Infection

Improved 3D Hydrogel Cultures of Primary Glial Cells for In Vitro Modelling of Neuroinflammation

1Department of Psychiatry, University of Alberta, 2Alberta Innovates-Health Solutions Interdisciplinary Team in Smart Neural Prostheses (Project SMART), University of Alberta, 3Department of Chemical and Materials Engineering, University of Alberta, 4Division of Physical Medicine and Rehabilitation, University of Alberta, 5Centre for Neuroscience, University of Alberta

JoVE 56615


A Convenient Method for Extraction and Analysis with High-Pressure Liquid Chromatography of Catecholamine Neurotransmitters and Their Metabolites

1School of Public Health of Southeast University, Laboratory of Environment and Biosafety Research Institute of Southeast University in Suzhou, 2Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Biological Science & Medical Engineering, Southeast University, 3School of Public Health, Tianjin Medical University, 4British Columbia Academy, Nanjing Foreign Language School

JoVE 56445


Determining Immune System Suppression versus CNS Protection for Pharmacological Interventions in Autoimmune Demyelination

1Physical Medicine and Rehabilitation, University of Alabama at Birmingham, 2Department of Pathology, University of Alabama at Birmingham, 3Department of Neurobiology, University of Alabama at Birmingham, 4Center for Glial Biology and Medicine, University of Alabama at Birmingham

JoVE 54348

 Immunology and Infection

A Modified Trier Social Stress Test for Vulnerable Mexican American Adolescents

1Center for Environmental Research and Children's Health (CERCH), Berkley School of Public Health, University of California, Berkeley, 2San Francisco (UCSF) School of Nursing, University of California, San Francisco, 3Human Development and Family Studies, Iowa State University

JoVE 55393

 Developmental Biology

Using Retinal Imaging to Study Dementia

1Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, 2Department of Medicine & Therapeutics, The Chinese University of Hong Kong, 3Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, 4Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, 5Memory Aging and Cognition Centre, National University Health System, 6Department of Pharmacology, National University of Singapore, 7Singapore Eye Research Institute, Singapore National Eye Centre, 8Duke-NUS Medical School, National University of Singapore

JoVE 56137


Sensory Exam

JoVE 10113

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

A complete sensory examination consists of testing primary sensory modalities as well as cortical sensory function. Primary sensory modalities include pain, temperature, light touch, vibration, and joint position sense. Sensation of the face is discussed in the videos Cranial Nerves Exam I and II, as are the special senses of smell, vision, taste, and hearing. The spinothalamic tract mediates pain and temperature information from skin to thalamus. The spinothalamic fibers decussate (cross over) 1-2 spinal nerve segments above the point of entry, then travel up to the brainstem until they synapse on various nuclei in thalamus. From the thalamus, information is then relayed to the cortical areas such as the postcentral gyrus (also known as the primary somatosensory cortex). Afferent fibers transmitting vibration and proprioception travel up to medulla in the ipsilateral posterior columns as fasciculus gracilis and fasciculus cuneatus, which carry information from the lower limbs and upper limbs, respectively. Subsequently, the afferent projections cross over and ascend to the thalamus, and from there to the primary somatosensory cortex. The pattern of a

 Physical Examinations III

Improved Method for the Establishment of an In Vitro Blood-Brain Barrier Model Based on Porcine Brain Endothelial Cells

1Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Department of Biomedicine, Aarhus University, 2Institute of Pharmaceutical Science, King's College London, 3HICoE Centre for Drug Research, Universiti Sains Malaysia

JoVE 56277


Motor Exam II

JoVE 10095

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

There are two main types of reflexes that are tested on a neurological examination: stretch (or deep tendon reflexes) and superficial reflexes. A deep tendon reflex (DTR) results from the stimulation of a stretch-sensitive afferent from a neuromuscular spindle, which, via a single synapse, stimulates a motor nerve leading to a muscle contraction. DTRs are increased in chronic upper motor neuron lesions (lesions of the pyramidal tract) and decreased in lower motor neuron lesions and nerve and muscle disorders. There is a wide variation of responses and reflexes graded from 0 to 4+ (Table 1). DTRs are commonly tested to help localize neurologic disorders. A common method of recording findings during the DTR examination is using a stick figure diagram. The DTR test can help distinguish upper and lower motor neuron problems, and can assist in localizing nerve root compression as well. Although the DTR of nearly any skeletal muscle could be tested, the reflexes that are routinely tested are: brachioradialis, biceps, triceps, patellar, and Achilles (Table 2). Superficial reflexes are segmental ref

 Physical Examinations III

An Introduction to Developmental Neurobiology

JoVE 5207

Developmental neuroscience is a field that explores how the nervous system is formed, from early embryonic stages through adulthood. Although it is known that neural progenitor cells follow predictable stages of proliferation, differentiation, migration, and maturation, the mechanisms controlling the progression through each stage are incompletely understood. Studying development is not only important for understanding how complex structures are assembled, but also for characterizing and treating developmental disorders. Since injury repair processes are similar to those that occur in development, this field is also a promising source of insight into when and how nervous system tissues regenerate.This video provides a brief overview of the field of developmental neuroscience, including some key experiments that have advanced our understanding of the mechanisms controlling the formation of early neural tissue and the further specialization of those cells into discrete subsets of neurons. The discussion focuses on prominent questions that developmental biologists are asking and then demonstrates some of the methods that they use to investigate these questions. Finally, applications of the techniques are presented to provide insight into what it means to be a developmental neuroscientist today. The range of experiments demo


More Results...