Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Neural Stem Cells: Self-renewing cells that generate the main phenotypes of the nervous system in both the embryo and adult. Neural stem cells are precursors to both Neurons and Neuroglia.

The Subventricular Zone En-face: Wholemount Staining and Ependymal Flow

1Department of Neurosurgery, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco - UCSF, 2Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 3Department of Neuroscience and Neurology, College of Physicians and Surgeons, Columbia University, 4Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, 5Center for Motor Neuron Biology and Disease, College of Physicians and Surgeons, Columbia University

JoVE 1938


 Neuroscience

Flow Cytometry Protocols for Surface and Intracellular Antigen Analyses of Neural Cell Types

1Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, 2Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, 3School of Life Sciences, Keele University, 4Center for Biological Signaling Studies (BIOSS), University of Freiburg

JoVE 52241


 Neuroscience

Generation of Integration-free Induced Pluripotent Stem Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors

1State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 2Division of Regenerative Medicine, Department of Medicine, Loma Linda University, 3Department of Orthopaedic Surgery, Loma Linda University, 4Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, 5Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, 6Collaborative Innovation Center for Cancer Medicine, 7Tianjin Key Laboratory of Blood Cell Therapy and Technology

JoVE 55091


 Developmental Biology

Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation

1Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, 2Department of Biology, University of Konstanz, 3Department of Statistics, Technical University of Dortmund, 4Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund

JoVE 52333


 Developmental Biology

An Enzyme- and Serum-free Neural Stem Cell Culture Model for EMT Investigation Suited for Drug Discovery

1Dept. of Biomedicine, Pharmacenter, University of Basel, 2Molecular Signalling and Gene Therapy, Narayana Nethralaya Foundation, Narayana Health City, 3Brain Ischemia and Regeneration, Department of Biomedicine, University Hospital Basel, 4Department of Neurosurgery, Klinikum Idar-Oberstein, 5Department of Neurosurgery and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, 6Department of Neurology, Laboratory of Molecular Neuro Oncology, University Hospital of Zurich

JoVE 54018


 Developmental Biology

Rapid Detection of Neurodevelopmental Phenotypes in Human Neural Precursor Cells (NPCs)

1Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 2Center for Advanced Biotechnology and Medicine, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 3The Child Health Institute of NJ, Department of Obstetrics, Gynecology, and Reproductive Services, Rutgers Robert Wood Johnson Medical School, 4The Child Health Institute of NJ, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 5Department of Genetics, Rutgers University

JoVE 56628


 Developmental Biology

Stable and Efficient Genetic Modification of Cells in the Adult Mouse V-SVZ for the Analysis of Neural Stem Cell Autonomous and Non-autonomous Effects

1Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 2Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 3Departmento de Biologìa Celular, Universidad de Valencia, 4Institut de Biomedicina de la Universitat de Barcelona (IBUB), 5Department of Molecular and Translational Medicine, Fibroblast Reprogramming Unit, University of Brescia

JoVE 53282


 Developmental Biology

Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice

1Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, 2Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 3Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, 4Curriculum in Genetics and Molecular Biology, University of North Carolina School of Medicine, 5Biological and Biomedical Sciences Program, University of North Carolina School of Medicine, 6Department of Radiation Oncology, Emory University School of Medicine, 7Department of Neurology, Neurosciences Center, University of North Carolina School of Medicine

JoVE 51763


 Neuroscience

Anatomically Inspired Three-dimensional Micro-tissue Engineered Neural Networks for Nervous System Reconstruction, Modulation, and Modeling

1Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 2Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, 4School of Biomedical Engineering, Drexel University

JoVE 55609


 Neuroscience

Three-dimensional Tissue Engineered Aligned Astrocyte Networks to Recapitulate Developmental Mechanisms and Facilitate Nervous System Regeneration

1Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 2Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, 3School of Biomedical Engineering, Drexel University, 4Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 5Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania

JoVE 55848


 Bioengineering

Wet-spinning-based Molding Process of Gelatin for Tissue Regeneration

1Department of Materials Sciences and Engineering, National Taiwan University of Science and Technology, 2Lab of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, 3School of Dentistry, National Yang-Ming University, 4Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, 5Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, 6Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 7Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, 8Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center

Video Coming Soon

JoVE 58932


 JoVE In-Press

Isolation, Characterization and MicroRNA-based Genetic Modification of Human Dental Follicle Stem Cells

1Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, 2Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, 3Department of Operative Dentistry and Periodontology, Rostock University Medical Center

JoVE 58089


 Genetics

Transplantation of Schwann Cells Inside PVDF-TrFE Conduits to Bridge Transected Rat Spinal Cord Stumps to Promote Axon Regeneration Across the Gap

1The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 2Department of Materials Science and Engineering, New Jersey Institute of Technology, 3Department of Biomedical Engineering, New Jersey Institute of Technology, 4Department of Cell Biology, University of Miami Miller School of Medicine, 5Department of Neurological Surgery, University of Miami Miller School of Medicine

JoVE 56077


 Medicine

Flow Cytometry-based Drug Screening System for the Identification of Small Molecules That Promote Cellular Differentiation of Glioblastoma Stem Cells

1Department of Neurological Surgery, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 2Department of Pathology, Johns Hopkins University, School of Medicine, 3Department of Neurological Surgery, University Hospital-Case Medical Center, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine

JoVE 56176


 Cancer Research

1234
More Results...