Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education


Surgical Retrieval, Isolation and In vitro Expansion of Human Anterior Cruciate Ligament-derived Cells for Tissue Engineering Applications

1Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine, 2Division of Orthopaedics and Rehabilitation, Department of Surgery, Southern Illinois University School of Medicine, 3Department of Electrical and Computer Engineering, Biomedical Engineering Program, Southern Illinois University Carbondale, 4University of Illinois at Springfield

JoVE 51597


Adenofection: A Method for Studying the Role of Molecular Chaperones in Cellular Morphodynamics by Depletion-Rescue Experiments

1Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de médecine, Centre de recherche sur le cancer de l'Université Laval, 2Oncology, Centre de recherche du CHU de Québec, Université Laval, 3Laboratoire d'études moléculaires des valvulopathies (LEMV), Groupe de recherche en valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, 4Department of Surgery, Université Laval

JoVE 54557


Modeling Social Stress

JoVE 5429

Stress negatively affects our quality of life. In particular, some individuals experience social stress when placed in a social environment that they are unfamiliar with or have difficulty adjusting to. Since it is hard to examine mechanisms of social stress in humans, modeling this condition in animals may help scientist in developing new therapies for treating this commonly encountered problem. This science education video begins by discussing the known anatomy and physiology behind stress response. Then, we explain a well-established paradigm for modeling social stress in rodents, the Resident-Intruder task. In the applications section, we review some example studies in which response to stress is measured.

 Behavioral Science

Hyperinsulinemic-euglycemic Clamps in Conscious, Unrestrained Mice

1Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute at Lake Nona, 2Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 3Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, 4Department of Pediatrics and Cellular and Integrative Physiology, Indiana University School of Medicine

JoVE 3188


More Results...