Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education

Optic Chiasm: The X-shaped structure formed by the meeting of the two optic nerves. At the optic chiasm the fibers from the medial part of each retina cross to project to the other side of the brain while the lateral retinal fibers continue on the same side. As a result each half of the brain receives information about the contralateral visual field from both eyes.

Induction of Paralysis and Visual System Injury in Mice by T Cells Specific for Neuromyelitis Optica Autoantigen Aquaporin-4

1Department of Neurology, University of California, 2Program in Immunology, University of California, 3Department of Neurology and Neurological Sciences, Stanford University, 4Department of Pathology, Stanford University

JoVE 56185

 Immunology and Infection

Sterile Tissue Harvest

JoVE 10298

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

In 1959 The 3 R's were introduced by W.M.S. Russell and R.L. Burch in their book The Principles of Humane Experimental Technique. The 3 R's are replacement, reduction, and refinement of the use of animals in research.1 The use of cell lines and tissue cultures that originated from research animals is a replacement technique, as it allows for many experiments to be conducted in vitro. Harvesting tissues and organs for use in cell and tissue cultures requires aseptic technique to avoid contamination of the tissues. Sterile harvest is also necessary for protein and RNA analysis and metabolic profiling of tissues. This manuscript will discuss the process of sterile organ harvest in rats and mice.

 Lab Animal Research

Cell Sorting of Neural Stem and Progenitor Cells from the Adult Mouse Subventricular Zone and Live-imaging of their Cell Cycle Dynamics

1CEA DSV iRCM SCSR, Laboratoire de Radiopathologie, UMR 967, 2INSERM, UMR 967, 3Université Paris Diderot, Sorbonne Paris Cité, UMR 967, 4Université Paris Sud, UMR 967, 5CNRS, Université Paris Sud, UMR 9197, Neuroscience Paris-Saclay Institute, Molecules Circuits Department

JoVE 53247


Murine In Utero Electroporation

JoVE 5208

In utero electroporation is an important technique for studying the molecular mechanisms that guide the proliferation, differentiation, migration, and maturation of cells during neural development. Electroporation enables the rapid and targeted delivery of material into cells by utilizing electrical pulses to create transient pores in cell membranes. Although electroporation has traditionally been used in in vitro studies, scientific advancements have now broadened its utilization to intact organs, such as those found in mouse embryos developing in utero. This video will introduce the key principles behind in utero electroporation in addition to reviewing the basic surgical techniques required to access developing embryos within a pregnant rodent. Details of the injection and electroporation steps are provided along with important considerations for directing gene delivery to specific brain regions. Finally, neurobiological applications of in utero electroporation are presented, such as investigating how specific genes contribute to neural development and how connections form between developing neurons.


Dissection and Culture of Commissural Neurons from Embryonic Spinal Cord

1Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal, 2Division of Experimental Medicine and Program in Neuroengineering, McGill University, 3Program in Neuroengineering, McGill University, 4Montreal Neurological Institute, 5Department of Anatomy and Cell Biology, McGill University, 6Department of Biology, McGill University, 7Department of Medicine, Universite de Montreal - University of Montreal

JoVE 1773


More Results...