Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Optic Nerve: The 2nd cranial nerve. The optic nerve conveys visual information from the retina to the brain. The nerve carries the axons of the retinal ganglion cells which sort at the optic chiasm and continue via the optic tracts to the brain. The largest projection is to the lateral geniculate nuclei; other important targets include the superior colliculi and the suprachiasmatic nuclei. Though known as the second cranial nerve, it is considered part of the central nervous system.

Cranial Nerves Exam I (I-VI)

JoVE 10091

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA


During each section of the neurological testing, the examiner uses the powers of observation to assess the patient. In some cases, cranial nerve dysfunction is readily apparent: a patient might…

 Physical Examinations III

Vision

JoVE 10858

Vision is the result of light being detected and transduced into neural signals by the retina of the eye. This information is then further analyzed and interpreted by the brain. First, light enters the front of the eye and is focused by the cornea and lens onto the retina—a thin sheet of neural tissue lining the back of the eye. Because of refraction through the convex lens of the eye, images are projected onto the retina upside-down and reversed. Light is absorbed by the rod and cone photoreceptor cells at the back of the retina, causing a decrease in their rate of neurotransmitter release. In addition to detecting photons of light, color information is also encoded here, since different types of cones respond maximally to different wavelengths of light. The photoreceptors then send visual information to bipolar cells near the middle of the retina, which is followed by projection to ganglion cells at the front of the retina. Horizontal and amacrine cells mediate lateral interactions between these cell types, integrating information from multiple photoreceptors. This integration aids in the initial processing of visual information, such as detecting simple features, like edges. Along with glial cells, the axons of the retinal ganglion cells make up the optic nerve, which transmits visual information to the brain. The optic nerve partially cro

 Core: Sensory Systems

Ophthalmoscopic Examination

JoVE 10146

Source: Richard Glickman-Simon, MD, Assistant Professor, Department of Public Health and Community Medicine, Tufts University School of Medicine, MA


The simplest ophthalmoscopes consist of an aperture to look through, a diopter indicator, and a disc for selecting lenses. The ophthalmoscope is primarily used to examine the fundus, or the…

 Physical Examinations II

Eye Exam

JoVE 10149

Source: Richard Glickman-Simon, MD, Assistant Professor, Department of Public Health and Community Medicine, Tufts University School of Medicine, MA


Proper evaluation of the eyes in a general practice setting involves vision testing, orbit inspection, and ophthalmoscopic examination. Before beginning the exam, it is crucial to be familiar…

 Physical Examinations II

Finding Your Blind Spot and Perceptual Filling-in

JoVE 10195

Source: Laboratory of Jonathan Flombaum—Johns Hopkins University


In the back of everyone's eye is a small piece of neural tissue called the retina. The retina has photosensitive cells that respond to stimulation by light. The responses of these cells are sent into the brain through the optic nerve, a bundle of neural fibers. In each…

 Sensation and Perception

The Retina

JoVE 10857

The retina is a layer of nervous tissue at the back of the eye that transduces light into neural signals. This process, called phototransduction, is carried out by rod and cone photoreceptor cells in the back of the retina.

Photoreceptors have outer segments with stacks of membranous disks that contain photopigment molecules—such as rhodopsin in rods. The photopigments absorb light, triggering a cascade of molecular events that results in the cell becoming hyperpolarized (with a more negative membrane potential) relative to when it is in the dark. This hyperpolarization decreases neurotransmitter release. Thus, unlike stimuli for most other sensory neurons, light induces a reduction in neurotransmitter release from photoreceptors. Although rods and cones both detect light, they play distinct roles in vision. Rods are highly sensitive to light, and therefore predominate in low-light conditions, such as at night. Cones are less sensitive and are used for most daytime vision. Cones are densely concentrated in the fovea—a small depression near the center of the retina that contains very few rods—and provide a high level of visual acuity in the area where the eye is focused. Cones also convey color information, because the different types—S (short), M (medium), and L (long) in humans—maximally absorb different wa

 Core: Sensory Systems

Lateral Canthotomy and Inferior Cantholysis

JoVE 10266

Source: James W Bonz, MD, Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, USA


Lateral canthotomy is a potentially eyesight-saving procedure when performed emergently for an orbital compartment syndrome. An orbital compartment syndrome results from a buildup of pressure behind the eye; as pressure mounts, both the optic …

 Emergency Medicine and Critical Care

Murine In Utero Electroporation

JoVE 5208

In utero electroporation is an important technique for studying the molecular mechanisms that guide the proliferation, differentiation, migration, and maturation of cells during neural development. Electroporation enables the rapid and targeted delivery of material into cells by utilizing electrical pulses to create transient pores in cell membranes. Although…

 Neuroscience

Blood Withdrawal I

JoVE 10246

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN


Blood collection is a common requirement for research studies that involve mice and rats. The method of blood withdrawal in mice and rats is dependent upon the volume of blood needed, the frequency of the sampling, the health status of the …

 Lab Animal Research

Induction of Paralysis and Visual System Injury in Mice by T Cells Specific for Neuromyelitis Optica Autoantigen Aquaporin-4

1Department of Neurology, University of California, 2Program in Immunology, University of California, 3Department of Neurology and Neurological Sciences, Stanford University, 4Department of Pathology, Stanford University

JoVE 56185

 Immunology and Infection

Laser Capture Microdissection of Highly Pure Trabecular Meshwork from Mouse Eyes for Gene Expression Analysis

1Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, 2Cellular and Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, 3Integrated Laboratory Systems Inc., 4Experimental Pathology Laboratories Inc.

JoVE 57576

 Biology

Using Retinal Imaging to Study Dementia

1Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, 2Department of Medicine & Therapeutics, The Chinese University of Hong Kong, 3Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, 4Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, 5Memory Aging and Cognition Centre, National University Health System, 6Department of Pharmacology, National University of Singapore, 7Singapore Eye Research Institute, Singapore National Eye Centre, 8Duke-NUS Medical School, National University of Singapore

JoVE 56137

 Medicine

Isolation of Primary Murine Retinal Ganglion Cells (RGCs) by Flow Cytometry

1Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, 2Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 3Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 4Department of Pharmaceutical Sciences, University of Tennessee Health Science Center

JoVE 55785

 Bioengineering

Ultrahigh Resolution Mouse Optical Coherence Tomography to Aid Intraocular Injection in Retinal Gene Therapy Research

1Research Service, VA Western New York Healthcare System, 2Department of Ophthalmology, (Ross Eye Institute), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo- SUNY, 3Pharmacology/Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo- SUNY, 4Physiology/Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo- SUNY, 5Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo- SUNY, 6The RNA Institute, University at Buffalo- SUNY, 7The SUNY Eye Institute

JoVE 55894

 Medicine

Functional Evaluation of Olfactory Pathways in Living Xenopus Tadpoles

1Laboratory of Neurobiology, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 2Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona, L'Hospitalet de Llobregat, 3Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat

JoVE 58028

 Neuroscience

Isolation of Retinal Arterioles for Ex Vivo Cell Physiology Studies

1Centre for Experimental Medicine, Queen's University of Belfast, 2Centre for Biomedical Sciences (Education), Queen's University of Belfast, 3Department of Pharmaceutical Chemistry and Pharmacognosy, Naresuan University, 4School of Medicine, Dentistry and Biomedical Sciences, Queen's University of Belfast

JoVE 57944

 Biology

Imaging Ca2+ Dynamics in Cone Photoreceptor Axon Terminals of the Mouse Retina

1Institute for Ophthalmic Research, University of Tübingen, 2Graduate School of Cellular & Molecular Neuroscience, University of Tübingen, 3Bernstein Centre for Computational Neuroscience, University of Tübingen, 4Molecular Genetics Laboratory, University of Tübingen, 5Centre for Ophthalmology, University of Tübingen

JoVE 52588

 Neuroscience

Use of Rabbit Eyes in Pharmacokinetic Studies of Intraocular Drugs

1Department of Ophthalmology, Seoul National University Bundang Hospital, 2Department of Ophthalmology, College of Medicine, Seoul National University, 3Department of Ophthalmology, Hanyang University Hospital, 4Department of Ophthalmology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 5Department of Clinical Pharmacology, Seoul National University Hospital, 6Department of Clinical Pharmacology, Seoul National University Bundang Hospital

JoVE 53878

 Medicine

Comprehensive Autopsy Program for Individuals with Multiple Sclerosis

1Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 2Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 3Mellen Center for Treatment and Research in Multiple Sclerosis, Neurological Institute, Cleveland Clinic

JoVE 59511

 Neuroscience

Three-dimensional Tissue Engineered Aligned Astrocyte Networks to Recapitulate Developmental Mechanisms and Facilitate Nervous System Regeneration

1Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 2Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, 3School of Biomedical Engineering, Drexel University, 4Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 5Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania

JoVE 55848

 Bioengineering

Anatomically Inspired Three-dimensional Micro-tissue Engineered Neural Networks for Nervous System Reconstruction, Modulation, and Modeling

1Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 2Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, 4School of Biomedical Engineering, Drexel University

JoVE 55609

 Neuroscience

Proton Therapy Delivery and Its Clinical Application in Select Solid Tumor Malignancies

1Department of Radiation Oncology, University of Maryland School of Medicine, 2Department of Radiation Oncology, University of Maryland Medical Center, 3Department of Medicine, University of Maryland School of Medicine, University of Maryland Greenebaum Comprehensive Cancer Center

JoVE 58372

 Medicine

Longitudinal Morphological and Physiological Monitoring of Three-dimensional Tumor Spheroids Using Optical Coherence Tomography

1Department of Electrical and Computer Engineering, Lehigh University, 2Department of Mechanical Engineering, Lehigh University, 3Department of Biomedical Engineering, Southern University of Science and Technology, 4Department of Technology R&D, Nexcelom Bioscience LLC, 5Department of Bioengineering, Lehigh University, 6Center for Photonics and Nanoelectronics, Lehigh University

JoVE 59020

 Cancer Research

A Novel In Vitro Model of Blast Traumatic Brain Injury

1Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, 2Royal British Legion Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, 3Department of Bioengineering, Imperial College London, 4Department of Life Sciences, Imperial College London, 5Department of Anaesthetics, Royal Berkshire Hospital NHS Foundation Trust, 6Royal Centre for Defence Medicine, Medical Directorate Joint Force Command

JoVE 58400

 Neuroscience
1234
More Results...