Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal

Filter by science education

 
 
Plant Diseases: Diseases of plants.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Detecting Estrogenic Ligands in Personal Care Products using a Yeast Estrogen Screen Optimized for the Undergraduate Teaching Laboratory

1Department of Biology, University of the South, 2School of Biological Sciences, Louisiana Tech University, 3School of Medicine, Louisiana State University Health Sciences Center, 4Department of Biology, Furman University, 5Department of Computer Science, Louisiana Tech University, 6Clemson University

Video Coming Soon

JoVE 55754


 JoVE In-Press

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Measurement of Extracellular Ion Fluxes Using the Ion-selective Self-referencing Microelectrode Technique

1Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 2Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, 3Department of Neurology and Center for Neuroscience, University of California, Davis Imaging of Dementia and Aging Laboratory, 4Department of Ophthalmology, Institute for Regenerative Cures, University of California, Davis

JoVE 52782


 Biology

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Tree Survey: Point-Centered Quarter Sampling Method

JoVE 10060

A number of methods are available for sampling forest communities. Point-centered quarter is one such method. It is used to gather information on the density, frequency, and coverage of tree species found in a forest. This information provides the ability to estimate the number of individual trees encountered, how often a certain tree occurs, how common the tree is compared to other trees, and the size of the tree. Compared to the standard plot analysis, the point-centered quarter method is more efficient, which is a major advantage. In a fixed-area plot sampling, a small portion of the total area of the forest is examined. In this small subsample, the density is determined directly by counting and identifying each tree. The ratio between size of the subplot and the overall forest size is used to determine the density for the entire forest.


 Environmental Science

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Soil Nutrient Analysis: Nitrogen, Phosphorus, and Potassium

JoVE 10077

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

In this experiment, three soil macronutrients are chemically extracted, combined with color-based reagents, then analyzed using color to determine the nutrient concentration present in the soil sample.

Nitrogen, phosphorus, and potassium are the main components of soil fertilizer. These methods isolate each nutrient from the soil into a solution that can be analyzed using turbidity and color to determine the concentration of nutrients present in the soil sample. Knowing present concentration informs environmental scientists of a nutrient deficiency or surplus in soils used to support plant production, and also provides general insight into basic biogeochemical cycles of an ecosystem.


 Environmental Science

Results below contain some, but not all of your search terms.

Phage Phenomics: Physiological Approaches to Characterize Novel Viral Proteins

1Department of Biology, San Diego State University, 2Computational Science Research Center, San Diego State University, 3Bioinformatics and Medical Informatics Research Center, San Diego State University, 4Department of Mathematics and Statistics, San Diego State University, 5Department of Computer Science, San Diego State University, 6Mathematics and Computer Science Division, Argonne National Laboratory, 7SPARC Committee, Broad Institute

JoVE 52854


 Immunology and Infection

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Techniques for the Evolution of Robust Pentose-fermenting Yeast for Bioconversion of Lignocellulose to Ethanol

1Bioenergy Research Unit, National Center for Agricultural Utilization Research, 2Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, 3Chemical Engineering and Material Science, Great Lakes Bioenergy Center, Michigan State University

JoVE 54227


 Bioengineering

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Nutrients in Aquatic Ecosystems

JoVE 10023

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

Nitrogen and phosphorus are essential plant nutrients found in aquatic ecosystems and both are monitored as a part of water quality testing because in excess amounts they can cause significant water quality problems. 

Nitrogen in water is measured as the common form nitrate (NO3-) that is dissolved in water and readily absorbed by photosynthesizers such as algae. The common form of phosphorus measured is phosphate (PO43-), which is strongly attracted to sediment particles as well as dissolved in water. In excess amounts, both nutrients can cause an increase in aquatic plant growth (algal bloom, Figure 1) that can disrupt the light, temperature, and oxygen levels in the water below and lead to eutrophication and hypoxia (low dissolved oxygen in water) forming a “dead zone” of no biological activity. Sources of nitrates and phosphorus include wastewater treatment plants, runoff from fertilized lawns and agricultural lands, faulty septic systems, animal manure runoff, and industrial waste discharge. Figu


 Environmental Science

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Biofuels: Producing Ethanol from Cellulosic Material

JoVE 10014

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

In this experiment, cellulosic material (such as corn stalks, leaves, grasses, etc.) will be used as a feedstock for the production of ethanol. The cellulosic material is first pretreated (ground and heated), digested with enzymes, and then fermented with yeast. Ethanol production is monitored using an ethanol probe. The experiment can be extended to optimize ethanol production by varying the feedstock used, pretreatment conditions, enzyme variation, yeast variation, etc. An alternative method of monitoring the reaction is to measure the carbon dioxide produced (using a gas sensor) instead of the ethanol. As a low-tech alternative, glucose meters (found in any drug store) can be used to monitor the glucose during the process, if an ethanol probe or carbon dioxide gas sensor is not available. With an increased emphasis on ‘inquiry-based learning”, scientific probes are becoming more popular. Handheld devices like the Vernier Lab Quest used in conjunction with a variety of probes (such as those for conductivity, dissolved oxygen, voltage, and more) allow for less focus on collecting data and/or making graphs and more on analyzing the data and making predictions. Anothe


 Environmental Science

Results below contain some, but not all of your search terms.

Towards Biomimicking Wood: Fabricated Free-standing Films of Nanocellulose, Lignin, and a Synthetic Polycation

1Institute for Critical Technology and Applied Science, Virginia Tech, 2Macromolecules and Interfaces Institute, Virginia Tech, 3Institute for Food Safety and Health, Illinois Institute of Technology- Moffett Campus, 4Wood, Cellulose, and Paper Research Department, University of Guadalajara, 5Department of Sustainable Biomaterials, Virginia Tech, 6Sustainable Nanotechnology Interdisciplinary Graduate Education Program, Virginia Tech

JoVE 51257


 Chemistry

Results below contain some, but not all of your search terms.

Time-lapse Fluorescence Imaging of Arabidopsis Root Growth with Rapid Manipulation of The Root Environment Using The RootChip

1Department of Plant Biology, Carnegie Institution for Science, 2Howard Hughes Medical Institute, 3Departments of Applied Physics and Bioengineering, Stanford University, 4Department of Microsystems Engineering (IMTEK) and Center for Biological Signaling Studies (BIOSS), University of Freiburg

JoVE 4290


 Bioengineering

145678950
More Results...