Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal

Filter by science education

 
 
Plant Diseases: Diseases of plants.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Optimized Protocol for the Extraction of Proteins from the Human Mitral Valve

1Centro Cardiologico Monzino IRCCS, 2Cardiovascular Tissue Bank of Milan, Centro Cardiologico Monzino IRCCS, 3Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, 4Department of Cardiovascular Disease, Development and Innovation Cardiac Surgery Unit, Centro Cardiologico Monzino IRCCS

JoVE 55762


 Biochemistry

Results below contain some, but not all of your search terms.

Measurement of Greenhouse Gas Flux from Agricultural Soils Using Static Chambers

1Office of Sustainability, University of Wisconsin-Madison, 2Department of Soil Science, University of Wisconsin-Madison, 3Department of Agronomy, University of Wisconsin-Madison, 4Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 5USDA-ARS Dairy Forage Research Center, 6USDA-ARS Pasture Systems Watershed Management Research Unit

JoVE 52110


 Environment

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Bacterial Growth Curve Analysis and its Environmental Applications

JoVE 10100

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Luisa Ikner

Bacteria are among the most abundant life forms on Earth. They are found in every ecosystem and are vital for everyday life. For example, bacteria affect what people eat, drink, and breathe, and there are actually more bacterial cells within a person’s body than mammalian cells. Because of the importance of bacteria, it is preferable to study particular species of bacteria in the laboratory. To do this, bacteria are grown under controlled conditions in pure culture, meaning that only one type of bacterium is under consideration. Bacteria grow quickly in pure culture, and cell numbers increase dramatically in a short period of time. By measuring the rate of cell population increase over time, a “growth curve” to be developed. This is important when aiming to utilize or inoculate known numbers of the bacterial isolate, for example to enhance plant growth, increase biodegradation of toxic organics, or produce antibiotics or other natural products at an industrial scale.


 Environmental Microbiology

Results below contain some, but not all of your search terms.

Quantifying Environmental Microorganisms and Viruses Using qPCR

JoVE 10186

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Bradley Schmitz

Quantitative polymerase chain reaction (qPCR), also known as real-time PCR, is a widely-used molecular technique for enumerating microorganisms in the environment. Prior to this approach, quantifying microorganisms was limited largely to classical culture-based techniques. However, the culturing of microbes from environmental samples can be particularly challenging, and it is generally held that as few as 1 to 10% of the microorganisms present within environmental samples are detectable using these techniques. The advent of qPCR in environmental microbiology research has therefore advanced the field greatly by allowing for more accurate determination of concentrations of microorganisms such as disease-causing pathogens in environmental samples. However, an important limitation of qPCR as an applied microbiological technique is that living, viable populations cannot be differentiated from inactive or non-living populations. This video demonstrates the use of qPCR to detect pepper mild mottle virus from an environmental water sample.


 Environmental Microbiology

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Pharmacologic Induction of Epidermal Melanin and Protection Against Sunburn in a Humanized Mouse Model

1The Markey Cancer Center, University of Kentucky College of Medicine, 2Graduate Center for Toxicology, University of Kentucky College of Medicine, 3Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 4Department of Pediatrics, University of Kentucky College of Medicine

JoVE 50670


 Medicine

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Whole Genome Sequencing of Candida glabrata for Detection of Markers of Antifungal Drug Resistance

1Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, 2Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, 3Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, 4Department of Microbiology and Infectious Diseases, Canberra Hospital and Health Services, Australian National University Medical School, 5Infection Management Services, Australian National University Medical School, 6Department of Microbiology and Infectious Diseases, St. Vincent's Hospital, 7Department of Infectious Diseases, Peter MacCallum Cancer Centre

Video Coming Soon

JoVE 56714


 JoVE In-Press

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Visualizing Soil Microorganisms via the Contact Slide Assay and Microscopy

JoVE 10053

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Bradley Schmitz

Soil comprises the thin layer at the earth’s surface, containing biotic and abiotic factors that contribute to life. The abiotic portion includes inorganic particles ranging in size and shape that determine the soil’s texture. The biotic portion incorporates plant residues, roots, organic matter, and microorganisms. Soil microbe abundance and diversity is expansive, as one gram of soil contains 107-8 bacteria, 106-8 actinomycetes, 105-6 fungi, 103 yeast, 104-6 protozoa, 103-4 algae, and 53 nematodes. Together, the biotic and abiotic factors form architectures around plant roots, known as the rhizosphere, that provide favorable conditions for soil microorganisms. Biotic and abiotic factors promote life in soils. However, they also contribute stressful dynamics that limit microbes. Biotic stress involves competition amongst life to adapt and survive in environmental conditions. For example, microbes can secrete inhibitory or toxic substances to harm neighboring microorganisms. Penicillium notatum is a notorious fungus, as it reduces competition for nutrients by producing an a


 Environmental Microbiology

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Observation and Quantification of Mating Behavior in the Pinewood Nematode, Bursaphelenchus xylophilus

1Department of Forest Protection, Zhejiang Agricultural & Forestry University, 2Institute of Forest Zoology and Forest Conservation, Georg-August University Göttingen, 3College of Plant Protection, Shandong Agricultural University, 4Institute of Forest Protection, Chinese Academy of Forestry, 5Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University

JoVE 54842


 Biology

Results below contain some, but not all of your search terms.

Methods of Soil Resampling to Monitor Changes in the Chemical Concentrations of Forest Soils

1New York Water Science Center, U.S. Geological Survey, 2School of Forest Resources, University of Maine, 3Natural Resources Canada, Canadian Forest Service, 4Northern Research Station, U.S. Forest Service, 5Department of Plant and Soil Science, University of Vermont, 6Ottauquechee NRCD, USDA Natural Resources Conservation Service, 7Green Mountain National Forest, U.S. Forest Service, 8Direction de la Recherche Forestière, Ministère du Québec, 9Department of Civil and Environmental Engineering, Syracuse University, 10Division of Environmental Science, SUNY College of Environmental Science and Forestry, 11White Mountain National Forest, U.S. Forest Service, 12Natural Resources and Earth System Sciences, University of New Hampshire, 13Greenwich, NY Field Office, USDA Natural Resources Conservation Service

JoVE 54815


 Environment

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Purification of Transcripts and Metabolites from Drosophila Heads

1Department of Neurology, McKnight Brain Institute, University of Florida, 2Department of Entomology and Nematology, University of Florida, 3Genetics Institute, Department of Molecular Genetics and Microbiology, University of Florida, 4McKnight Brain Institute, Department of Neuroscience, Genetics Institute, Center for Translational Research on Neurodegenerative Diseases, and Center for Movement Disorders and Neurorestoration, University of Florida

JoVE 50245


 Biology

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Dye-sensitized Solar Cells

JoVE 10328

Source: Tamara M. Powers, Department of Chemistry, Texas A&M University

Today's modern world requires the use of a large amount of energy. While we harness energy from fossil fuels such as coal and oil, these sources are nonrenewable and thus the supply is limited. To maintain our global lifestyle, we must extract energy from renewable sources. The most promising renewable source, in terms of abundance, is the sun, which provides us with more than enough solar energy to fully fuel our planet many times over. So how do we extract energy from the sun? Nature was the first to figure it out: photosynthesis is the process whereby plants convert water and carbon dioxide to carbohydrates and oxygen. This process occurs in the leaves of plants, and relies on the chlorophyll pigments that color the leaves green. It is these colored molecules that absorb the energy from sunlight, and this absorbed energy which drives the chemical reactions. In 1839, Edmond Becquerel, then a 19-year old French physicist experimenting in his father's lab, created the first photovoltaic cell. He illuminated an acidic solution of silver chloride that was connected to platinum electrodes which generated a voltage and current.1 Many discoveries and advances wer


 Inorganic Chemistry

16789101150
More Results...