Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Polycystic Kidney, Autosomal Dominant: Kidney disorders with autosomal dominant inheritance and characterized by multiple Cysts in both Kidneys with progressive deterioration of renal function.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Zebrafish Maintenance and Husbandry

JoVE 5152

The zebrafish (Danio rerio) is a powerful vertebrate model system for studying development, modeling disease, and screening for novel therapeutics. Due to their small size, large numbers of zebrafish can be housed in the laboratory at low cost. Although zebrafish are relatively easy to maintain, special consideration must be given to both diet and water quality to in order to optimize fish health and reproductive success. This video will provide an overview of zebrafish husbandry and maintenance in the lab. After a brief review of the natural zebrafish habitat, techniques essential to recreating this environment in the lab will be discussed, including key elements of fish facility water recirculation systems and the preparation of brine shrimp as part of the zebrafish diet. Additionally, the presentation will include information on how specific zebrafish strains are tracked in a laboratory setting, with specific reference to the collection of tail fin samples for DNA extraction and genotyping. Finally, experimental modifications of the zebrafish environment will be discussed as a means to further our understanding of these fish, and in turn, ourselves.


 Biology II

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Using Bioluminescent Imaging to Investigate Synergism Between Streptococcus pneumoniae and Influenza A Virus in Infant Mice

1Department of Microbiology and Immunology, University of Melbourne, 2Laboratory of Pediatric Infectious Diseases, Radboud University Nijmegen Medical Centre, 3The Centre for Dynamic Imaging, The Walter and Eliza Hall Institute for Medical Research

JoVE 2357


 Immunology and Infection

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Genetic Crosses

JoVE 5541

To dissect genetic processes or create organisms with novel suites of traits, scientists can perform genetic crosses, or the purposeful mating of two organisms. The recombination of parental genetic material in the offspring allows researchers to deduce the functions, interactions, and locations of genes.

This video will examine how genetic crosses were influential in developing Mendel's three laws of inheritance, which form the basis of our understanding of genetics. One genetic crossing technique that was first developed for single-celled organisms such as yeast, known as tetrad analysis, will then be presented in detail, followed by some examples of how this classical tool is used in genetic studies today.


 Genetics

Results below contain some, but not all of your search terms.

Genetic Screens

JoVE 5542

Genetic screens are critical tools for defining gene function and understanding gene interactions. Screens typically involve mutating genes and then assessing the affected organisms for phenotypes of interest. The process can be “forward”, where mutations are generated randomly to identify unknown genes responsible for the phenotypes, or it can be “reverse”, where specific genes are targeted for mutation to observe what phenotypes are produced.Here, JoVE reviews various types of genetic screens, including those that depend on either loss-of-function or gain-of-function mutations, which respectively decrease or increase the activity of genes. We then explore general protocols for forward and reverse screens in a popular model organism, the nematode worm. Finally, we highlight how screens are applied in research today, for example to better understand gene interactions that may contribute to neurodegenerative diseases.


 Genetics

Results below contain some, but not all of your search terms.

Annexin V and Propidium Iodide Labeling

JoVE 5650

Staining with annexin V and propidium iodide (PI) provides researchers with a way to identify different types of cell death—either necrosis or apoptosis. This technique relies on two components. The first, annexin V, is a protein that binds certain phospholipids called phosphatidylserines, which normally occur only in the inner, cytoplasm-facing leaflet of a cell’s membrane, but become “flipped” to the outer leaflet during the early stages of apoptosis. The second component is the DNA-binding dye molecule PI, which can only enter cells when their membranes are ruptured—a characteristic of both necrosis and late apoptosis.This video article begins with a review of the concepts behind annexin V and PI staining, and emphasizes how differential patterns of staining can be used to distinguish between cells progressing down different death pathways. We then review a generalized protocol for this technique, followed by a description of how researchers are currently using annexin V and PI staining to better understand cell death.


 Cell Biology

12122
More Results...