Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Response Elements: Nucleotide sequences, usually upstream, which are recognized by specific regulatory transcription factors, thereby causing gene response to various regulatory agents. These elements may be found in both promoter and enhancer regions.

Prediction and Validation of Gene Regulatory Elements Activated During Retinoic Acid Induced Embryonic Stem Cell Differentiation

1Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona, 2Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, 3MTA-DE “Lendulet” Immunogenomics Research Group, University of Debrecen

JoVE 53978

 Developmental Biology

Intracellular Hormone Receptors

JoVE 10876

Lipid-soluble hormones diffuse across the plasma and nuclear membrane of target cells to bind to their specific intracellular receptors. These receptors act as transcription factors that regulate gene expression and protein synthesis in the target cell

Based on their mode of action, intracellular hormone receptors are classified as Type I or Type II receptors. Type I receptors, including steroid hormone receptors such as the androgen receptor, are present in the cytoplasm. Hormone binding transports the hormone-receptor complex to the nucleus, where it binds to regulatory DNA sequences called hormone response elements and activates gene transcription. Type II receptors, such as the thyroid hormone receptor, are bound to their DNA response elements within the nucleus even in the absence of hormone. In this state, the receptor acts as an active repressor of transcription. However, upon hormone binding, the receptor-hormone complex activates transcription of thyroid hormone-inducible genes.

 Core: Endocrine System

Internal Receptors

JoVE 11011

Many cellular signals are hydrophilic and therefore cannot pass through the plasma membrane. However, small or hydrophobic signaling molecules can cross the hydrophobic core of the plasma membrane and bind to internal, or intracellular, receptors that reside within the cell. Many mammalian steroid hormones use this mechanism of cell signaling, as does nitric oxide (NO) gas.

Similar to membrane-bound receptors, binding of a ligand to a receptor located in the cytoplasm or nucleus of a cell causes a conformational change in the receptor. Like transcription factors, the active receptor can bind to receptor-specific DNA binding sites to increase or decrease the transcription of target genes. In the case of an intracellular receptor located in the cytoplasm, the receptor-ligand complex must first cross the nuclear membrane. Many steroid hormones, including estrogen and testosterone, use intracellular receptors to induce specific effects. As an example, estrogen can diffuse across the membrane; binding of estrogen to its receptor results in dimerization of the receptors and transport of the ligand-receptor complex to the nucleus. Once in the nucleus, the complex can bind to DNA sequences called Estrogen-Response Elements (EREs). Depending on the other transcription factors and co-activators, binding of activated estrogen receptors (ERs) to EREs may cause an increa

 Core: Cell Signaling

Evaluation of Vascular Control Mechanisms Utilizing Video Microscopy of Isolated Resistance Arteries of Rats

1Department of Physical Therapy, Marquette University, 2Medical College of Wisconsin, 3Department of Physiology, Medical College of Wisconsin, 4Graduate Programs of Nurse Anesthesia, Texas Wesleyan University, 5Office of Research, Medical College of Wisconsin

JoVE 56133

 Medicine

Detecting Estrogenic Ligands in Personal Care Products using a Yeast Estrogen Screen Optimized for the Undergraduate Teaching Laboratory

1Department of Biology, University of the South, 2School of Biological Sciences, Louisiana Tech University, 3School of Medicine, Louisiana State University Health Sciences Center, 4Department of Biology, Furman University, 5Department of Computer Science, Louisiana Tech University, 6Clemson University

JoVE 55754

 Biology

Live-cell Measurement of Odorant Receptor Activation Using a Real-time cAMP Assay

1Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, 2Department of Molecular Genetics and Microbiology, Duke University Medical Center, 3Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, 4Institute of Health Science, Chinese Academy of Science/Shanghai Jiao Tong University School of Medicine

JoVE 55831

 Neuroscience

The Assembly and Application of 'Shear Rings': A Novel Endothelial Model for Orbital, Unidirectional and Periodic Fluid Flow and Shear Stress

1Molecular and Cellular Physiology, Louisiana State University Health Sciences Center in Shreveport, 2Biological Sciences, Louisiana Tech University, 3Neurology, Louisiana State University Health Sciences Center in Shreveport, 4Institut Cochin, Inserm U1016, Cnrs Umr8104, Université Paris Descartes

JoVE 54632

 Biology

Systematic Analysis of In Vitro Cell Rolling Using a Multi-well Plate Microfluidic System

1Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, 2Center for Regenerative Therapeutics, Brigham and Women's Hospital, 3Harvard Medical School, Harvard University, 4Harvard Stem Cell Institute, Harvard University, 5Harvard-MIT Division of Health Sciences and Technology, 6Department of Mechanical Engineering, Massachusetts Institute of Technology

JoVE 50866

 Bioengineering
More Results...