Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
RNA, Chloroplast: Ribonucleic acid in chloroplasts having regulatory and catalytic roles as well as involvement in protein synthesis.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Comprehensive Workflow for the Genome-wide Identification and Expression Meta-analysis of the ATL E3 Ubiquitin Ligase Gene Family in Grapevine

1Dipartimento di Biotecnologie, Università degli Studi di Verona, 2Ecology and Evolution, Research School of Biology, The Australian National University, 3Dipartimento di Agraria, SACEG, Università degli Studi di Sassari

Video Coming Soon

JoVE 56626


 JoVE In-Press

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

From Constructs to Crystals – Towards Structure Determination of β-barrel Outer Membrane Proteins

1Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, 2National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 3National Institute of General Medical Sciences (NIGMS), National Institutes of Health

JoVE 53245


 Chemistry

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Introduction to Titration

JoVE 5699

Source: Laboratory of Dr. Yee Nee Tan — Agency for Science, Technology, and Research

Titration is a common technique used to quantitatively determine the unknown concentration of an identified analyte.1-4 It is also called volumetric analysis, as the measurement of volumes is critical in titration. There are many types of titrations based on the types of reactions they exploit. The most common types are acid-base titrations and redox titrations.5-11 In a typical titration process, a standard solution of titrant in a burette is gradually applied to react with an analyte with an unknown concentration in an Erlenmeyer flask. For acid-base titration, a pH indicator is usually added in the analyte solution to indicate the endpoint of titration.12 Instead of adding pH indicators, pH can also be monitored using a pH meter during a titration process and the endpoint is determined graphically from a pH titration curve. The volume of titrant recorded at the endpoint can be used to calculate the concentration of the analyte based on the reaction stoichiometry. For the acid-base titration presented in this video, the titrant is a standardized sodium hydroxide solution and the analyte is domestic vinegar. Vinegar is an acidic liquid that


 General Chemistry

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Empirical, Metagenomic, and Computational Techniques Illuminate the Mechanisms by which Fungicides Compromise Bee Health

1Vegetable Crop Research Unit, USDA-ARS, 2Department of Entomology, University of Wisconsin-Madison, 3Department of Horticulture, University of Wisconsin-Madison, 4Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, 5Department of Bacteriology, University of Wisconsin-Madison, 6Laboratory of Genetics, Genome Center of Wisconsin, 7DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 8J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison

JoVE 54631


 Environment

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

An Overview of Genetic Engineering

JoVE 5552

Genetic engineering – the process of purposefully altering an organism’s DNA – has been used to create powerful research tools and model organisms, and has also seen many agricultural applications. However, in order to engineer traits to tackle complex agricultural problems such as stress tolerance, or to realize the promise of gene therapy for treating human diseases, further advances in the field are still needed. Important considerations include the safe and efficient delivery of genetic constructs into cells or organisms, and the establishment of the desired modification in an organism’s genome with the least “off-target” effects. JoVE’s Overview of Genetic Engineering will present a history of the field, highlighting the discoveries that confirmed DNA as the genetic material and led to the development of tools to modify DNA. Key questions that must be answered in order to improve the process of genetic engineering will then be introduced, along with various tools used by genetic engineers. Finally, we will survey several applications demonstrating the types of experimental questions and strategies in the field today.


 Genetics

More Results...