Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section

 
 
RNA, Messenger: RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.

Nanomanipulation of Single RNA Molecules by Optical Tweezers

1Nanoscale Engineering Graduate Program, College of Nanoscale Science and Engineering, University at Albany, State University of New York, 2Nanoscale Science Undergraduate Program, College of Nanoscale Science and Engineering, University at Albany, State University of New York, 3Nanobioscience Constellation, College of Nanoscale Science and Engineering, University at Albany, State University of New York, 4The RNA Institute, University at Albany, State University of New York, 5Department of Biological Sciences, University at Albany, State University of New York

JoVE 51542


 Bioengineering

Transcriptomic Analysis of Human Retinal Surgical Specimens Using jouRNAl

1U968, Institut National de la Santé et de la Recherche Médicale, 2UMR S 968, Université Pierre et Marie Curie, 3UMR 7210, Centre National de la Recherche Scientifique, 4Départment d'Ophtalmologie, Centre Hospitalier Universitaire de Bordeaux

JoVE 50375


 Medicine

RNA Analysis of Environmental Samples Using RT-PCR

JoVE 10104

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Bradley Schmitz

Reverse transcription-polymerase chain reaction (RT-PCR) involves the same process as conventional PCR — cycling temperature to amplify nucleic acids. However, while conventional PCR only amplifies deoxyribonucleic acids (DNA), RT-PCR enables the amplification of ribonucleic acids (RNA) through the formation of complementary DNA (cDNA). This enables RNA-based organisms found within the environment to be analyzed utilizing methods and technologies that are designed for DNA. Many viruses found in the environment use RNA as their genetic material. Several RNA-based viral pathogens, such as Norovirus, and indicator organisms, such as pepper mild mottle virus (PMMoV), do not have culture-based detection methods for quantification. In order to detect for the presence of these RNA viruses in environmental samples from soil, water, agriculture, etc., molecular assays rely on RT-PCR to convert RNA into DNA. Without RT-PCR, microbiologists would not be able to assay and research numerous RNA-based viruses that pose risks to human and environmental health. RT-PCR can also be employed as a tool to measure microbial activity in the env


 Essentials of Environmental Microbiology

Detection of microRNA Expression in Peritoneal Membrane of Rats Using Quantitative Real-time PCR

1Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, 2Division of Nephrology, Department of Internal Medicine, Jichi Medical University, 3Department of Medical Physiology, Meiji Pharmaceutical University

JoVE 55505


 Genetics

Sample Preparation for Mass Spectrometry-based Identification of RNA-binding Regions

1Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, 2Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 3Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, 4Graduate Group in Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine

Video Coming Soon

JoVE 56004


 JoVE In-Press

Generation of Induced Pluripotent Stem Cells from Frozen Buffy Coats using Non-integrating Episomal Plasmids

1Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), 2Laboratory of Medical Genetics, Fondazione IRCCS Ca´ Granda, Ospedale Maggiore Policlinico, 3Del E. Webb Center for Neuroscience, Aging & Stem Cell Research, Sanford-Burnham Medical Research Institute

JoVE 52885


 Developmental Biology

Protocols for Implementing an Escherichia coli Based TX-TL Cell-Free Expression System for Synthetic Biology

1Department of Biology, California Institute of Technology, 2Department of Bioengineering, California Institute of Technology, 3Synthetic Biology Center, Department of Bioengineering, Massachusetts Institute of Technology, 4School of Physics and Astronomy, University of Minnesota

JoVE 50762


 Biology

PAR-CliP - A Method to Identify Transcriptome-wide the Binding Sites of RNA Binding Proteins

1Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, Rockefeller University, 2Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 3Biozentrum der Universität Basel and Swiss Institute of Bioinformatics (SIB), 4Biozentrum der Universität Basel and Swiss Institute of Bioinformatics (SIB), 5Genomics Resource Center, Rockefeller University

JoVE 2034


 Biology

iCLIP - Transcriptome-wide Mapping of Protein-RNA Interactions with Individual Nucleotide Resolution

1Laboratory of Molecular Biology, Medical Research Council - MRC, 2European Bioinformatics Institute, EMBL Heidelberg, 3Computer and Information Science, University of Ljubljana, 4Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute

JoVE 2638


 Biology

Porous Silicon Microparticles for Delivery of siRNA Therapeutics

1Department of Nanomedicine, Houston Methodist Research Institute, 2MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, 3Pediatrics Department of Union Hospital, Huazhong University of Science and Technology, 4CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, 5Department of Medicine, Weill Cornell Medical College, 6Department of Cell and Developmental Biology, Weill Cornell Medical College

JoVE 52075


 Bioengineering

Induction of Mesenchymal-Epithelial Transitions in Sarcoma Cells

1Department of Medicine, Duke University, 2Department of Bioengineering, Rice University, 3Department of Molecular Genetics and Microbiology, Duke University, 4Solid Tumor Program and the Duke Prostate Center, Duke University Medical Center, 5Duke University Medical Center

JoVE 55520


 Developmental Biology

Working with Human Tissues for Translational Cancer Research

1Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, 2Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, 3Department of Pathology and Institutional Tissue Bank, University of Texas MD Anderson Cancer Center

JoVE 53189


 Medicine

12345678930
More Results...