Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education

RNA, Messenger: RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.

Types of RNA

JoVE 10800

Three main types of RNA are involved in protein synthesis: messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA). These RNAs perform diverse functions and can be broadly classified as protein-coding or non-coding RNA. Non-coding RNAs play important roles in the regulation of gene expression in response to developmental and environmental changes. Non-coding RNAs in prokaryotes can be manipulated to develop more effective antibacterial drugs for human or animal use. The central dogma of molecular biology states that DNA contains the information that encodes proteins and RNA uses this information to direct protein synthesis. Different types of RNA are involved in protein synthesis. Based on whether or not they encode proteins, RNA is broadly classified as protein-coding or non-coding RNA. Messenger RNA (mRNA) is the protein-coding RNA. It consists of codons—sequences of three nucleotides that encode a specific amino acid. Transfer RNA (tRNA) and ribosomal RNA (rRNA) are non-coding RNA. tRNA acts as an adaptor molecule that reads the mRNA sequence and places amino acids in the correct order in the growing polypeptide chain. rRNA and other proteins make up the ribosome—the seat of protein synthesis in the cell. During translation, ribosomes move along an mRNA strand where they stabilize the binding of tRNA molecules and catalyze the for

 Core: Gene Expression

RNA Structure

JoVE 10799

The basic structure of RNA consists of a five-carbon sugar and one of four nitrogenous bases. Although most RNA is single-stranded, it can form complex secondary and tertiary structures. Such structures play essential roles in the regulation of transcription and translation.

There are three main types of ribonucleic acid (RNA): messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA). All three RNA types consist of a single-stranded chain of nucleotides. Each nucleotide is composed of the five-carbon sugar ribose. The carbon molecules of ribose are numbered one through five. Carbon number five carries a phosphate group and carbon number one a nitrogenous base. There are four nitrogenous bases in RNA—adenine (A), guanine (G), cytosine (C), and uracil (U). Uracil is the only base in RNA that is not present in DNA, which uses thymine (T) instead. During transcription, RNA is synthesized from a DNA template based on complementary binding of the new RNA bases to the DNA bases; A binds to T, G binds to C, C binds to G, and U binds to A. Like DNA, adjacent nucleotides in RNA are linked together through phosphodiester bonds. These bonds form between the phosphate group of one nucleotide and a hydroxyl (–OH) group on the ribose of the adjacent nucleotide. This structure lends RNA its directionality—that is, the two ends

 Core: Gene Expression
More Results...