Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Secretory Vesicles: Vesicles derived from the Golgi apparatus containing material to be released at the cell surface.

Golgi Apparatus

JoVE 10970

As they leave the Endoplasmic Reticulum (ER), properly folded and assembled proteins are selectively packaged into vesicles. These vesicles are transported by microtubule-based motor proteins and fuse together to form vesicular tubular clusters, subsequently arriving at the Golgi apparatus, a eukaryotic endomembrane organelle that often has a distinctive ribbon-like appearance.

The Golgi apparatus is a major sorting and dispatch station for the products of the ER. Newly arriving vesicles enter the cis face of the Golgi—the side facing the ER—and are transported through a collection of pancake-shaped, membrane-enclosed cisternae. Each cisterna contains unique compositions of enzymes and performs specific protein modifications. As proteins progress through the cis Golgi network, some are phosphorylated and undergo removal of certain carbohydrate modifications that were added in the ER. Proteins then move through the medial cisterna, where they may be glycosylated to form glycoproteins. After modification in the trans cisterna, proteins are given tags that define their cellular destination. Depending on the molecular tags, proteins are packaged into vesicles and trafficked to particular cellular locations, including the lysosome and plasma membrane. Specific markers on the membranes of these vesicles allow them to dock

 Core: Cell Structure and Function

A Cell-based Assay to Investigate Non-muscle Myosin II Contractility via the Folded-gastrulation Signaling Pathway in Drosophila S2R+ Cells

1Department of Biology, The University of North Carolina at Chapel Hill, 2Department of Biology, Reed College, 3Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, 4Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill

JoVE 58325

 Developmental Biology

Imaging FITC-dextran as a Reporter for Regulated Exocytosis

1Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, 2Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, 3Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, 4Departments of Pathology and of Microbiology and Immunology and Sean N. Parker Center for Allergy and Asthma Research, School of Medicine, Stanford University

JoVE 57936

 Biology

In Vivo Single-Molecule Tracking at the Drosophila Presynaptic Motor Nerve Terminal

1Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, 2VIB Centre for Brain and Disease Research, KU Leuven Department of Neurosciences, Leuven Institute for Neurodegenerative Disease (LIND), 3Queensland Brain Institute, The University of Queensland

JoVE 56952

 Neuroscience

Imaging the Human Immunological Synapse

1Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-Universidad Autónoma de Madrid, 2Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 3Unidad de Audiovisuales, Facultad de Medicina, Universidad Autónoma de Madrid

Video Coming Soon

JoVE 60312

 JoVE In-Press
More Results...