Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Severe Combined Immunodeficiency: Group of rare congenital disorders characterized by impairment of both humoral and cell-mediated immunity, leukopenia, and low or absent antibody levels. It is inherited as an X-linked or autosomal recessive defect. Mutations occurring in many different genes cause human Severe Combined Immunodeficiency (Scid).

What is Genetic Engineering?

JoVE 10806

Genetic engineering is the process of modifying an organism’s DNA to introduce new, desirable traits. Many organisms, from bacteria to plants and animals, have been genetically modified for academic, medical, agricultural, and industrial purposes. While genetic engineering has definite benefits, ethical concerns surround modifying humans and our food supply.

Genetic engineering is possible because the genetic code—the way information is encoded by DNA—and the structure of DNA are universal among all life forms. As a result, an organism’s genetic code may be modified in several ways. The nucleotide sequence may be selectively edited by using techniques such as the CRISPR/Cas9 system. Known as the "molecular scissors," the CRISPR/Cas9 system is an innate, prokaryotic immune response that has been co-opted for editing genetic information. A gene may also be removed from an organism to create a “knockout,” or introduced to create a “knockin,” through a process called gene targeting. This method relies on homologous recombination—genetic exchange between DNA molecules that share an extended region with similar sequences—to modify an endogenous gene. Scientists can also insert a gene from one organism into the genome of another, resulting in a transgenic organism. Generally, DNA

 Core: Biotechnology

Gene Therapy

JoVE 10815

Gene therapy is a technique where a gene is inserted into a person’s cells to prevent or treat a serious disease. The added gene may be a healthy version of the gene that is mutated in the patient, or it could be a different gene that inactivates or compensates for the patient’s disease-causing gene. For example, in patients with severe combined immunodeficiency (SCID) due to a mutation in the gene for the enzyme adenosine deaminase, a functioning version of the gene can be inserted. The patient’s cells can then make the enzyme, curing this potentially deadly disease in some cases. Genes can be introduced into a patient’s cells in two main ways: in vivo—directly into a person through injection into specific tissues or into the bloodstream; and ex vivo—into cells that have been removed from the patient, which are transplanted back after the gene is inserted. The gene is usually inserted into a vector—often a virus that has been modified to not cause disease—to get the gene into the patient’s cells and delivered to the nucleus. In some cases—for instance, when retroviral vectors are used—the gene is randomly inserted into the person’s genome, leading to stable expression of the inserted gene. In others—such as when adenoviral vectors are used—the gene does not integrate i

 Core: Biotechnology

Basic Care Procedures

JoVE 10290

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN


Mice and rats account for over 90% of the animals used for biomedical research. The proper care of these research animals is critical to the outcome of experiments. There are general procedures that apply to the majority of these mice and…

 Lab Animal Research

Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining

1Virus and Centromere Team, Centre de Génétique et Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, 2Université de Lyon 1, 3Laboratoire d'excellence, LabEX DEVweCAN, 4Institut de Virologie Moléculaire et Structurale, CNRS UPR 3296, 5Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286

JoVE 51091

 Neuroscience

Using the BLT Humanized Mouse as a Stem Cell based Gene Therapy Tumor Model

1Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, 2UCLA AIDS Institute, 3Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, 4Department of Medical and Molecular Pharmacology, David Geffen School of Medicine at UCLA, 5Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA

JoVE 4181

 Immunology and Infection

Stereotaxic Surgery for Implantation of Microelectrode Arrays in the Common Marmoset (Callithrix jacchus)

1Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, 2Neuroscience Program, University of Colorado Anschutz Medical Campus, 3Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo

JoVE 60240

 Neuroscience

Patient-derived Orthotopic Xenograft Models for Human Urothelial Cell Carcinoma and Colorectal Cancer Tumor Growth and Spontaneous Metastasis

1Laboratory of Translational Cancer Research, Institute for Translational Research, Ochsner Clinic Foundation, 2Department of Urology, Ochsner Clinic Foundation, 3Department of Colon and Rectal Surgery, Ochsner Clinic Foundation, 4Ochsner Clinical School, University of Queensland, School of Medicine

JoVE 59223

 Cancer Research

A Surgical Procedure for the Administration of Drugs to the Inner Ear in a Non-Human Primate Common Marmoset (Callithrix jacchus)

1Division of Regenerative Medicine, Jikei University School of Medicine, 2Department of Otorhinolaryngology, Jikei University School of Medicine, 3Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 4Laboratory Animal Facilities, Jikei University School of Medicine

JoVE 56574

 Medicine
More Results...