Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Solid Phase Extraction: An extraction method that separates analytes using a solid phase and a liquid phase. It is used for preparative sample cleanup before analysis by Chromatography and other analytical methods.

Fabrication of a Dipole-assisted Solid Phase Extraction Microchip for Trace Metal Analysis in Water Samples

1Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 2Center for Measurement Standards, Industrial Technology Research Institute, 3National Synchrotron Radiation Research Center, 4Department of Chemistry, National Changhua University of Education

JoVE 53500


 Bioengineering

Quantification of the Immunosuppressant Tacrolimus on Dried Blood Spots Using LC-MS/MS

1iC42 Clinical Research and Development, University of Colorado, Anschutz Medical Campus, 2Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, 3Food and Drug Administration (FDA), Center of Drug Evaluation Research - Office of Generic Drugs, 4Transplant Clinical Research, University of Cincinnati

JoVE 52424


 Medicine

A Convenient Method for Extraction and Analysis with High-Pressure Liquid Chromatography of Catecholamine Neurotransmitters and Their Metabolites

1School of Public Health of Southeast University, Laboratory of Environment and Biosafety Research Institute of Southeast University in Suzhou, 2Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Biological Science & Medical Engineering, Southeast University, 3School of Public Health, Tianjin Medical University, 4British Columbia Academy, Nanjing Foreign Language School

Video Coming Soon

JoVE 56445


 JoVE In-Press

Two-way Valorization of Blast Furnace Slag: Synthesis of Precipitated Calcium Carbonate and Zeolitic Heavy Metal Adsorbent

1Department of Offshore, Process and Energy Engineering, Cranfield University, 2School of Applied Chemical and Environmental Sciences, Sheridan College Institute of Technology and Advanced Learning, 3School of Engineering, University of Guelph, 4Carbon Systems Engineering, Centre for Combustion, Carbon Capture and Storage, Cranfield University

JoVE 55062


 Engineering

Sample Extraction and Simultaneous Chromatographic Quantitation of Doxorubicin and Mitomycin C Following Drug Combination Delivery in Nanoparticles to Tumor-bearing Mice

1Department of Pharmaceutical Sciences, University of Toronto, 2Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Ontario Cancer Institute, University Health Network

JoVE 56159


 Cancer Research

In Situ Neutron Powder Diffraction Using Custom-made Lithium-ion Batteries

1School of Chemistry, University of Sydney, 2Institute for Superconducting & Electronic Materials, University of Wollongong, 3Australian Synchrotron, 4Australian Nuclear Science and Technology Organisation, 5School of Mechanical, Materials, and Mechatronic Engineering, University of Wollongong, 6School of Chemistry, University of New South Wales

JoVE 52284


 Engineering

Solid-Liquid Extraction

JoVE 5538

Source: Laboratory of Dr. Jay Deiner — City University of New York

Extraction is a crucial step in most chemical analyses. It entails removing the analyte from its sample matrix and passing it into the phase required for spectroscopic or chromatographic identification and quantification. When the sample is a solid and the required phase for analysis is a liquid, the process is called solid-liquid extraction. A simple and broadly applicable form of solid-liquid extraction entails combining the solid with a solvent in which the analyte is soluble. Through agitation, the analyte partitions into the liquid phase, which may then be separated from the solid through filtration. The choice of solvent must be made based on the solubility of the target analyte, and on the balance of cost, safety, and environmental concerns.


 Organic Chemistry

Extraction and Analysis of Microbial Phospholipid Fatty Acids in Soils

1Department of Renewable Resources, University of Alberta, 2Department of Science, Augustana Faculty, University of Alberta, 3Laboratoire Génie Civil et géo-Environnement, Université de Lille, 4Department of Earth and Environmental Sciences, Mount Royal University, 5Forest Ecology & Production, Great Lakes Forestry Centre, Natural Resources Canada

JoVE 54360


 Environment

Next Generation Sequencing for the Detection of Actionable Mutations in Solid and Liquid Tumors

1Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 2Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3Abramson Cancer Center

JoVE 52758


 Cancer Research

Preparing Anhydrous Reagents and Equipment

JoVE 10227

Source: Laboratory of Dr. Dana Lashley - College of William and Mary
Demonstrated by: Timothy Beck and Lucas Arney

Many reactions in organic chemistry are moisture-sensitive and must be carried out under careful exclusion of water. In these cases the reagents have a high affinity to react with water from the atmosphere and if left exposed the desired reaction will not take place or give poor yields, because the reactants are chemically altered. In order to prevent undesired reactions with H2O these reactions have to be carried out under an inert atmosphere. An inert atmosphere is generated by running the reaction under nitrogen gas, or in more sensitive cases, under a noble gas such as argon. Every component in such a reaction must be completely anhydrous, or free of water. This includes all reagents and solvents used as well as all glassware and equipment that will come into contact with the reagents. Extremely water-sensitive reactions must be carried out inside of a glovebox which provides a completely sealed off anhydrous environment to work under via a pair of gloves which protrudes out to one of the sides of the chamber.


 Organic Chemistry

Establishment of Cancer Stem Cell Cultures from Human Conventional Osteosarcoma

1Department of Surgery and Translational Medicine (DCMT), University of Florence, 2Neurofarba Department, University of Florence, 3Department of Traumatology and General Orthopedics, Azienda Ospedaliera Universitaria Careggi

JoVE 53884


 Cancer Research

Three-dimensional Tissue Engineered Aligned Astrocyte Networks to Recapitulate Developmental Mechanisms and Facilitate Nervous System Regeneration

1Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 2Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, 3School of Biomedical Engineering, Drexel University, 4Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 5Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania

Video Coming Soon

JoVE 55848


 JoVE In-Press

12345678986
More Results...