Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Solid-Phase Synthesis Techniques: Techniques used to synthesize chemicals using molecular substrates that are bound to a solid surface. Typically a series of reactions are conducted on the bound substrate that results in either the covalent attachment of specific moieties or the modification of existing function groups. These techniques offer an advantage to those involving solution reactions in that the substrate compound does not have to be isolated and purified between the reaction steps.

Solid Phase Synthesis

JoVE 10349

Source: Vy M. Dong and Diane Le, Department of Chemistry, University of California, Irvine, CA

Merrifield's solid-phase synthesis is a Nobel Prize winning invention where a reactant molecule is bound on a solid support and undergoes successive chemical reactions to form a desired compound. When the molecules are bound to a solid support, excess reagents and byproducts can be removed by washing away the impurities, while the target compound remains bound to the resin. Specifically, we will showcase an example of solid-phase peptide synthesis (SPPS) to demonstrate this concept.


 Organic Chemistry II

Two-way Valorization of Blast Furnace Slag: Synthesis of Precipitated Calcium Carbonate and Zeolitic Heavy Metal Adsorbent

1Department of Offshore, Process and Energy Engineering, Cranfield University, 2School of Applied Chemical and Environmental Sciences, Sheridan College Institute of Technology and Advanced Learning, 3School of Engineering, University of Guelph, 4Carbon Systems Engineering, Centre for Combustion, Carbon Capture and Storage, Cranfield University

JoVE 55062


 Engineering

Preparing Anhydrous Reagents and Equipment

JoVE 10227

Source: Laboratory of Dr. Dana Lashley - College of William and Mary
Demonstrated by: Timothy Beck and Lucas Arney

Many reactions in organic chemistry are moisture-sensitive and must be carried out under careful exclusion of water. In these cases the reagents have a high affinity to react with water from the atmosphere and if left exposed the desired reaction will not take place or give poor yields, because the reactants are chemically altered. In order to prevent undesired reactions with H2O these reactions have to be carried out under an inert atmosphere. An inert atmosphere is generated by running the reaction under nitrogen gas, or in more sensitive cases, under a noble gas such as argon. Every component in such a reaction must be completely anhydrous, or free of water. This includes all reagents and solvents used as well as all glassware and equipment that will come into contact with the reagents. Extremely water-sensitive reactions must be carried out inside of a glovebox which provides a completely sealed off anhydrous environment to work under via a pair of gloves which protrudes out to one of the sides of the chamber.


 Organic Chemistry

A Convenient Method for Extraction and Analysis with High-Pressure Liquid Chromatography of Catecholamine Neurotransmitters and Their Metabolites

1School of Public Health of Southeast University, Laboratory of Environment and Biosafety Research Institute of Southeast University in Suzhou, 2Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Biological Science & Medical Engineering, Southeast University, 3School of Public Health, Tianjin Medical University, 4British Columbia Academy, Nanjing Foreign Language School

Video Coming Soon

JoVE 56445


 JoVE In-Press

Synthesis of Thermogelling Poly(N-isopropylacrylamide)-graft-chondroitin Sulfate Composites with Alginate Microparticles for Tissue Engineering

1Department of Chemical Engineering, Rowan University, 2Department of Biological Sciences, Rowan University, 3Department of Biomedical Engineering, Drexel University

JoVE 53704


 Bioengineering

Synthesis and Characterization of Fe-doped Aluminosilicate Nanotubes with Enhanced Electron Conductive Properties

1Department of Applied Science and Technology, Politecnico di Torino, 2Department of Civil and Mechanical Engineering, Università degli Studi di Cassino e del Lazio Meridionale, 3Institute of Chemistry, Politecnico di Torino, 4Department of Chemistry & NIS Interdepartmental Centre, University of Turin, 5INSTM Unit of Torino-Politecnico, Politecnico di Torino

JoVE 54758


 Chemistry

12345678985
More Results...