Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal

Filter by science education

 
 
Spinal Cord Injuries: Penetrating and non-penetrating injuries to the spinal cord resulting from traumatic external forces (e.g., Wounds, Gunshot; Whiplash injuries; etc.).

A Tissue Displacement-based Contusive Spinal Cord Injury Model in Mice

1Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman and Campbell Brain and Spine, Indiana University School of Medicine, 2Norton Neuroscience Institute, Norton Healthcare, 3Department of Anatomical Sciences and Neurobiology, University of Louisville

JoVE 54988


 Medicine

Transplantation of Schwann Cells Inside PVDF-TrFE Conduits to Bridge Transected Rat Spinal Cord Stumps to Promote Axon Regeneration Across the Gap

1The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 2Department of Materials Science and Engineering, New Jersey Institute of Technology, 3Department of Biomedical Engineering, New Jersey Institute of Technology, 4Department of Cell Biology, University of Miami Miller School of Medicine, 5Department of Neurological Surgery, University of Miami Miller School of Medicine

Video Coming Soon

JoVE 56077


 JoVE In-Press

A Novel Vertebral Stabilization Method for Producing Contusive Spinal Cord Injury

1Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman and Campbell Brain and Spine, Indiana University School of Medicine, 2Medical Neuroscience Graduate Program, Indiana University School of Medicine, 3Department of Anatomy and Cell Biology, Indiana University School of Medicine, 4Norton Neuroscience Institute, Norton Healthcare

JoVE 50149


 Medicine

Contrast Enhanced Ultrasound Imaging for Assessment of Spinal Cord Blood Flow in Experimental Spinal Cord Injury

1Laboratoire d'étude de la microcirculation, Faculté de Médecine Paris Diderot Paris VII, U942, 2Department of orthopaedic surgery, Bicetre Universitary Hospital, Public Assistance of Paris Hospital, 3Institute of Medical Science, Faculty of Medicine, University of Toronto, 4Department of Intensive care and Anesthesiology, Bicetre Universitary Hospital, Public Assistance of Paris Hospital

JoVE 52536


 Medicine

Analysis of Spinal Cord Blood Supply Combining Vascular Corrosion Casting and Fluorescence Microsphere Technique: A Feasibility Study in an Aortic Surgical Large Animal Model

1Cardiovascular Surgery, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, 2Anesthesiology and Intensive Care, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg

Video Coming Soon

JoVE 56222


 JoVE In-Press

Quantitative Assessment of Immune Cells in the Injured Spinal Cord Tissue by Flow Cytometry: a Novel Use for a Cell Purification Method

1Institute for Memory Impairments and Neurological Disorders, University of California, 2Physical Medicine & Rehabilitation, University of California, 3Anatomy & Neurobiology, University of California, 4Sue and Bill Gross Stem Cell Research Center, University of California, 5Section of Molecular Biology, University of California, 6Reeve-Irvine Research Center, University of California

JoVE 2698


 Immunology and Infection

Controlled Cervical Laceration Injury in Mice

1Norton Neuroscience Institute, Norton Healthcare, 2Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman and Campbell Brain and Spine, Medical Neuroscience Graduate Program, and Department of Anatomy and Cell Biology, Indiana University School of Medicine

JoVE 50030


 Medicine

A Murine Model of Cervical Spinal Cord Injury to Study Post-lesional Respiratory Neuroplasticity

1UFR des sciences de la santé - Simone Veil, Université de Versailles Saint-Quentin-en-Yvelines, 2Service de Physiologie - Explorations fonctionnelles, Hôpital Ambroise Paré, 3Services de Physiologie, Explorations Fonctionnelles, Réanimation Médicale et Centre d'Investigation Clinique et d'Innovation Technologique (Unité Inserm 805), Université de Versailles Saint-Quentin-en-Yvelines

JoVE 51235


 Medicine

Anatomically Inspired Three-dimensional Micro-tissue Engineered Neural Networks for Nervous System Reconstruction, Modulation, and Modeling

1Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 2Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, 4School of Biomedical Engineering, Drexel University

JoVE 55609


 Neuroscience

Derivation of Glial Restricted Precursors from E13 mice

1Hugo W. Moser Research Institute at Kennedy Krieger, Johns Hopkins University, 2Department of Neurology, Johns Hopkins School of Medicine, 3University of Maryland, 4Experimental Neurology, Biogen Idec, 5The Brain Science Institute, Johns Hopkins School of Medicine, 6Department of Pediatrics, Johns Hopkins School of Medicine

JoVE 3462


 Neuroscience

Improved 3D Hydrogel Cultures of Primary Glial Cells for in Vitro Modelling of Neuroinflammation

1Department of Psychiatry, University of Alberta, 2Alberta Innovates-Health Solutions Interdisciplinary Team in Smart Neural Prostheses (Project SMART), University of Alberta, 3Department of Chemical and Materials Engineering, University of Alberta, 4Division of Physical Medicine and Rehabilitation, University of Alberta, 5Centre for Neuroscience, University of Alberta

Video Coming Soon

JoVE 56615


 JoVE In-Press

Partial Optic Nerve Transection in Rats: A Model Established with a New Operative Approach to Assess Secondary Degeneration of Retinal Ganglion Cells

1Aier School of Ophthalmology, Central South University, Changsha, China, 2Institute of Immunology, Tsinghua University School of Medicine, Beijing, China, 3Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China, 4Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China

JoVE 56272


 Neuroscience

Method for the Assessment of Effects of a Range of Wavelengths and Intensities of Red/near-infrared Light Therapy on Oxidative Stress In Vitro

1Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, 2School of Animal Biology and The Oceans Institute, The University of Western Australia, 3Experimental and Regenerative Neurosciences, School of Anatomy, Physiology and Human Biology, The University of Western Australia

JoVE 52221


 Biology

Neck Exam

JoVE 10180

Source: Robert E. Sallis, MD. Kaiser Permanente, Fontana, California, USA

Examination of the neck can be a challenge because of the many bones, joints, and ligaments that make up the underlying cervical spine. The cervical spine is composed of seven vertebrae stacked in gentle C-shaped curve. The anterior part of each vertebra is made up of the thick bony body, which is linked to the body above and below by intervertebral discs. These discs help provide stability and shock absorption to the cervical spine. The posterior elements of the vertebra, which include the laminae, transverse, and spinous processes and the facet joints, form a protective canal for the cervical spinal cord and its nerve roots. The cervical spine supports the head and protects the neural elements as they come from the brain and from the spinal cord. Therefore, injuries or disorders affecting the neck can also affect the underlying spinal cord and have potentially catastrophic consequences. The significant motion that occurs in the neck places the cervical spine at increased risk for injury and degenerative changes. The cervical spine is also a common source of radicular pain in the shoulder. For this reason, the neck should be evaluated as a routine part of every shoulder exam.


 Physical Examinations III

Live Imaging of Dorsal Root Axons after Rhizotomy

1Temple University, Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, 2Medical Research Service, Department of Veterans Affairs Hospital, 3Department of Neurobiology and Anatomy, Drexel University College of Medicine, 4Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine

JoVE 3126


 Neuroscience

Lateral Fluid Percussion: Model of Traumatic Brain Injury in Mice

1Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 2Spinal Cord and Brain Injury Research Center, 3Department of Anatomy and Neurobiology, Department of Physical Medicine and Rehabilitation, University of Kentucky Chandler Medical Center

JoVE 3063


 Neuroscience

12345678922
More Results...