Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal

Filter by science education

 
 
Spinal Nerves: The 31 paired peripheral nerves formed by the union of the dorsal and ventral spinal roots from each spinal cord segment. The spinal nerve plexuses and the spinal roots are also included.

Analysis of Spinal Cord Blood Supply Combining Vascular Corrosion Casting and Fluorescence Microsphere Technique: A Feasibility Study in an Aortic Surgical Large Animal Model

1Cardiovascular Surgery, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, 2Anesthesiology and Intensive Care, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg

Video Coming Soon

JoVE 56222


 JoVE In-Press

In Vitro Recording of Mesenteric Afferent Nerve Activity in Mouse Jejunal and Colonic Segments

1Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, 2Visceral Pain Group, Discipline of Medicine, University of Adelaide, 3Department of Biomedical Sciences, University of Sheffield, 4Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire, 5Department of Gastroenterology and Hepatology, Antwerp University Hospital

JoVE 54576


 Neuroscience

Sensory Exam

JoVE 10113

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

A complete sensory examination consists of testing primary sensory modalities as well as cortical sensory function. Primary sensory modalities include pain, temperature, light touch, vibration, and joint position sense. Sensation of the face is discussed in the videos Cranial Nerves Exam I and II, as are the special senses of smell, vision, taste, and hearing. The spinothalamic tract mediates pain and temperature information from skin to thalamus. The spinothalamic fibers decussate (cross over) 1-2 spinal nerve segments above the point of entry, then travel up to the brainstem until they synapse on various nuclei in thalamus. From the thalamus, information is then relayed to the cortical areas such as the postcentral gyrus (also known as the primary somatosensory cortex). Afferent fibers transmitting vibration and proprioception travel up to medulla in the ipsilateral posterior columns as fasciculus gracilis and fasciculus cuneatus, which carry information from the lower limbs and upper limbs, respectively. Subsequently, the afferent projections cross over and ascend to the thalamus, and from there to the primary somatosensory cortex. The pattern of a


 Physical Examinations III

Induction of Paralysis and Visual System Injury in Mice by T Cells Specific for Neuromyelitis Optica Autoantigen Aquaporin-4

1Department of Neurology, University of California, 2Program in Immunology, University of California, 3Department of Neurology and Neurological Sciences, Stanford University, 4Department of Pathology, Stanford University

JoVE 56185


 Immunology and Infection

Cranial Nerves Exam II (VII-XII)

JoVE 10005

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

The cranial nerve examination follows the mental status evaluation in a neurological exam. However, the examination begins with observations made upon greeting the patient. For example, weakness of the facial muscles (which are innervated by cranial nerve VII) can be readily apparent during the first encounter with the patient. Cranial nerve VII (the facial nerve) also has sensory branches, which innervate the taste buds on the anterior two-thirds of the tongue and the medial aspect of the external auditory canal. Therefore, finding ipsilateral taste dysfunction in a patient with facial weakness confirms the involvement of cranial nerve VII. In addition, knowledge of the neuroanatomy helps the clinician to localize the level of the lesion: unilateral weakness of the lower facial muscles suggests a supranuclear lesion on the opposite side, while lesions involving the nuclear or infranuclear portion of the facial nerve manifest with an ipsilateral paralysis of all the facial muscles on the involved side. Cranial nerve VIII (the acoustic nerve) has two divisions: the hearing (cochlear) division and the vestibular division, which innervates the semi


 Physical Examinations III

Cranial Nerves Exam I (I-VI)

JoVE 10091

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

During each section of the neurological testing, the examiner uses the powers of observation to assess the patient. In some cases, cranial nerve dysfunction is readily apparent: a patient might mention a characteristic chief complaint (such as loss of smell or diplopia), or a visually evident physical sign of cranial nerve involvement, such as in facial nerve palsy. However, in many cases a patient's history doesn't directly suggest cranial nerve pathologies, as some of them (such as sixth nerve palsy) may have subtle manifestations and can only be uncovered by a careful neurological exam. Importantly, a variety of pathological conditions that are associated with alterations in mental status (such as some neurodegenerative disorders or brain lesions) can also cause cranial nerve dysfunction; therefore, any abnormal findings during a mental status exam should prompt a careful and complete neurological exam. The cranial nerve examination is applied neuroanatomy. The cranial nerves are symmetrical; therefore, while performing the examination, the examiner should compare each side to the other. A physician should approach the examination in a


 Physical Examinations III

Complete Spinal Cord Injury and Brain Dissection Protocol for Subsequent Wholemount In Situ Hybridization in Larval Sea Lamprey

1Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, 2Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, 3Department of Neurology, Temple University School of Medicine

JoVE 51494


 Neuroscience

Transplantation of Schwann Cells Inside PVDF-TrFE Conduits to Bridge Transected Rat Spinal Cord Stumps to Promote Axon Regeneration Across the Gap

1The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 2Department of Materials Science and Engineering, New Jersey Institute of Technology, 3Department of Biomedical Engineering, New Jersey Institute of Technology, 4Department of Cell Biology, University of Miami Miller School of Medicine, 5Department of Neurological Surgery, University of Miami Miller School of Medicine

JoVE 56077


 Medicine

Partial Optic Nerve Transection in Rats: A Model Established with a New Operative Approach to Assess Secondary Degeneration of Retinal Ganglion Cells

1Aier School of Ophthalmology, Central South University, Changsha, China, 2Institute of Immunology, Tsinghua University School of Medicine, Beijing, China, 3Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China, 4Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China

JoVE 56272


 Neuroscience

Neck Exam

JoVE 10180

Source: Robert E. Sallis, MD. Kaiser Permanente, Fontana, California, USA

Examination of the neck can be a challenge because of the many bones, joints, and ligaments that make up the underlying cervical spine. The cervical spine is composed of seven vertebrae stacked in gentle C-shaped curve. The anterior part of each vertebra is made up of the thick bony body, which is linked to the body above and below by intervertebral discs. These discs help provide stability and shock absorption to the cervical spine. The posterior elements of the vertebra, which include the laminae, transverse, and spinous processes and the facet joints, form a protective canal for the cervical spinal cord and its nerve roots. The cervical spine supports the head and protects the neural elements as they come from the brain and from the spinal cord. Therefore, injuries or disorders affecting the neck can also affect the underlying spinal cord and have potentially catastrophic consequences. The significant motion that occurs in the neck places the cervical spine at increased risk for injury and degenerative changes. The cervical spine is also a common source of radicular pain in the shoulder. For this reason, the neck should be evaluated as a routine part of every shoulder exam.


 Physical Examinations III

Derivation of Glial Restricted Precursors from E13 mice

1Hugo W. Moser Research Institute at Kennedy Krieger, Johns Hopkins University, 2Department of Neurology, Johns Hopkins School of Medicine, 3University of Maryland, 4Experimental Neurology, Biogen Idec, 5The Brain Science Institute, Johns Hopkins School of Medicine, 6Department of Pediatrics, Johns Hopkins School of Medicine

JoVE 3462


 Neuroscience

Transplantation of Olfactory Ensheathing Cells to Evaluate Functional Recovery after Peripheral Nerve Injury

1UPRES EA3830, Institute for Research and Innovation in Biomedicine, University of Rouen, 2Neuroscience, Karolinska Institutet, 3Otorhinolaryngology, Head and Neck Surgery Department, Rouen University Hospital, 4Otorhinolaryngology, Head and Neck Surgery Department, Amiens University Hospital

JoVE 50590


 Neuroscience

Implementation of a Coherent Anti-Stokes Raman Scattering (CARS) System on a Ti:Sapphire and OPO Laser Based Standard Laser Scanning Microscope

1INSERM U1051, Institut des Neurosciences de Montpellier (INM), Université de Montpellier, 2Université de Nîmes, 3CNRS, IES, UMR 5214, 4Aix-Marseille Université, CNRS, École Centrale Marseille, Institut Fresnel, UMR 7249, 5Montpellier RIO Imaging (MRI)

JoVE 54262


 Biology

Motor Exam II

JoVE 10095

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

There are two main types of reflexes that are tested on a neurological examination: stretch (or deep tendon reflexes) and superficial reflexes. A deep tendon reflex (DTR) results from the stimulation of a stretch-sensitive afferent from a neuromuscular spindle, which, via a single synapse, stimulates a motor nerve leading to a muscle contraction. DTRs are increased in chronic upper motor neuron lesions (lesions of the pyramidal tract) and decreased in lower motor neuron lesions and nerve and muscle disorders. There is a wide variation of responses and reflexes graded from 0 to 4+ (Table 1). DTRs are commonly tested to help localize neurologic disorders. A common method of recording findings during the DTR examination is using a stick figure diagram. The DTR test can help distinguish upper and lower motor neuron problems, and can assist in localizing nerve root compression as well. Although the DTR of nearly any skeletal muscle could be tested, the reflexes that are routinely tested are: brachioradialis, biceps, triceps, patellar, and Achilles (Table 2). Superficial reflexes are segmental ref


 Physical Examinations III

12345678917
More Results...