Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section

 
 
Spores, Fungal: Reproductive bodies produced by fungi.

Scanning Electron Microscopy (SEM) Protocols for Problematic Plant, Oomycete, and Fungal Samples

1Biodiversity and Conservation Department, Real Jardín Botánico, CSIC, 2Research Support Unit, Real Jardín Botánico, CSIC, 3Mycology Department, Real Jardín Botánico, CSIC, 4Division of Glycoscience, AlbaNova University Center, Royal Institute of Technology (KTH)

JoVE 55031


 Biology

Filamentous Fungi

JoVE 10030

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Bradley Schmitz

Fungi are heterotrophic eukaryotic organisms, and with the exception of yeasts, are aerobic. They are abundant in surface soils and are important for their role in nutrient cycling and the decomposition of organic matter and organic contaminants. White rot fungi (phanerochaete chryosporium) for example, (Figure 1) are known to degrade aromatics. Figure 1. White rot on birch.


 Environmental Microbiology

A New Method for Qualitative Multi-scale Analysis of Bacterial Biofilms on Filamentous Fungal Colonies Using Confocal and Electron Microscopy

1Interactions Arbres – Microorganismes, UMR1136, INRA Université de Lorraine, 2Ecologie et Ecophysiologie Forestières - PTEF, UMR 1137, INRA Université de Lorraine, 3Biosciences Division, Oak Ridge National Laboratory

JoVE 54771


 Immunology and Infection

Visualizing Soil Microorganisms via the Contact Slide Assay and Microscopy

JoVE 10053

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Bradley Schmitz

Soil comprises the thin layer at the earth’s surface, containing biotic and abiotic factors that contribute to life. The abiotic portion includes inorganic particles ranging in size and shape that determine the soil’s texture. The biotic portion incorporates plant residues, roots, organic matter, and microorganisms. Soil microbe abundance and diversity is expansive, as one gram of soil contains 107-8 bacteria, 106-8 actinomycetes, 105-6 fungi, 103 yeast, 104-6 protozoa, 103-4 algae, and 53 nematodes. Together, the biotic and abiotic factors form architectures around plant roots, known as the rhizosphere, that provide favorable conditions for soil microorganisms. Biotic and abiotic factors promote life in soils. However, they also contribute stressful dynamics that limit microbes. Biotic stress involves competition amongst life to adapt and survive in environmental conditions. For example, microbes can secrete inhibitory or toxic substances to harm neighboring microorganisms. Penicillium notatum is a notorious fungus, as it reduces competition for nutrients by producing an a


 Environmental Microbiology

RNAi in C. elegans

JoVE 5105

RNA interference (RNAi) is a widely used technique in which double stranded RNA is exogenously introduced into an organism, causing knockdown of a target gene. In the nematode, C. elegans, RNAi is particularly easy and effective because it can be delivered simply by feeding the worms bacteria that express double stranded RNA (dsRNA) that is complementary to a gene of interest. First, this video will introduce the concept of RNA interference and explain how it causes targeted gene knockdown. Then, we will demonstrate a protocol for using RNAi in C. elegans, which includes preparation of the bacteria and RNAi worm plates, culturing of the worms, and how to assess the effects of RNAi on the worms. RNAi is frequently used to perform reverse genetic screens in order to reveal which genes are important to carry out specific biological processes. Furthermore, automated reverse genetic screens allow for the efficient knockdown and analysis of a large collection of genes. Lastly, RNAi is often used to study the development of C. elegans. Since its discovery, scientists have used RNAi to make tremendous progress on the understanding of many biological phenomena.


 Biology I

Results below contain some, but not all of your search terms.

Investigating the Detrimental Effects of Low Pressure Plasma Sterilization on the Survival of Bacillus Subtilis Spores Using Live Cell Microscopy

1Institute of Aerospace Medicine, Department of Radiation Biology, Space Microbiology Research Group, German Aerospace Center (DLR e.V.), 2Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Technology, Ruhr-University Bochum, 3Advanced Light and Electron Microscopy (ZBS 4), Robert Koch Institute, 4Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Technology, Biomedical Applications of Plasma Technology, Ruhr-University Bochum

Video Coming Soon

JoVE 56666


 JoVE In-Press

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

The Portable Chemical Sterilizer (PCS), D-FENS, and D-FEND ALL: Novel Chlorine Dioxide Decontamination Technologies for the Military

1United States Army-Natick Soldier RD&E Center, Warfighter Directorate, 2Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 3Lawrence Livermore National Laboratory, 4Children's Hospital Oakland Research Institute

JoVE 4354


 Bioengineering

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Decontamination for Laboratory Biosafety

JoVE 10399

Robert M. Rioux and Zhifeng Chen, Pennsylvania State University, University Park, PA

Decontamination is essential for laboratory biosafety, as the accumulation of microbial contamination in the laboratory can lead to the transmission of disease. The degree of decontamination can be classified as either disinfection or sterilization. Disinfection aims to eliminate all pathogenic microorganisms, with the exception of bacterial spores on lab surfaces or equipment. Sterilization, on the other hand, aims to eliminate all microbial life. Different methods are available which include chemicals, heat, and radiation, and once again depend on the degree of decontamination, as well as the concentration of the contaminating microorganisms, presence of organic matter, and type of equipment or surface to be cleaned. Each method has its advantages and cautionary measures that need to be taken to avoid hazards.


 Lab Safety

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Genetic Manipulation of the Plant Pathogen Ustilago maydis to Study Fungal Biology and Plant Microbe Interactions

1Institute for Microbiology, Heinrich-Heine University Düsseldorf, 2Bioeconomy Science Center (BioSC), 3Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology, 4Cluster of Excellence in Plant Sciences (CEPLAS), Heinrich-Heine University Düsseldorf

JoVE 54522


 Genetics

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Establishment of an In vitro System to Study Intracellular Behavior of Candida glabrata in Human THP-1 Macrophages

1Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Andhra Pradesh, India, 2Current location: VIB Department for Molecular Biomedical Research, UGent, Fiers-Schell-Van Montagu Building, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium

JoVE 50625


 Immunology and Infection

Results below contain some, but not all of your search terms.
123456
More Results...