Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal

Filter by science education

 
 

Synthesis and Characterization of Fe-doped Aluminosilicate Nanotubes with Enhanced Electron Conductive Properties

1Department of Applied Science and Technology, Politecnico di Torino, 2Department of Civil and Mechanical Engineering, Università degli Studi di Cassino e del Lazio Meridionale, 3Institute of Chemistry, Politecnico di Torino, 4Department of Chemistry & NIS Interdepartmental Centre, University of Turin, 5INSTM Unit of Torino-Politecnico, Politecnico di Torino

JoVE 54758


 Chemistry

Seeded Synthesis of CdSe/CdS Rod and Tetrapod Nanocrystals

1Department of Chemical Engineering, UC Berkeley, 2Department of Materials Science and Engineering, UC Berkeley, 3Department of Chemistry, UC Berkeley, 4Materials Sciences Division, Lawrence Berkeley National Laboratory, 5Department of Chemistry, University of Chicago, 6Center for Nanoscale Materials, Argonne National Laboratory

JoVE 50731


 Chemistry

Synthesis of Cationized Magnetoferritin for Ultra-fast Magnetization of Cells

1Bristol Centre for Functional Nanomaterials, University of Bristol, 2Department of Materials, Imperial College London, 3Self Assembly Group, CIC nanoGUNE, 4Ikebasque, Basque Foundation for Science, 5School of Cellular and Molecular Medicine, University of Bristol, 6H.H. Wills Physics Laboratory, University of Bristol

JoVE 54785


 Bioengineering

Millifluidics for Chemical Synthesis and Time-resolved Mechanistic Studies

1Center for Advanced Microstructures and Devices (CAMD), Louisiana State University, 2Center for Atomic-Level Catalyst Design, Cain Department of Chemical Engineering, Louisiana State University, 3Department of Biological and Agricultural Engineering, Louisiana State University, 4Argonne National Laboratory

JoVE 50711


 Bioengineering

Synthesis Of A Ti(III) Metallocene Using Schlenk Line Technique

JoVE 10428

Source: Tamara M. Powers, Department of Chemistry, Texas A&M University 

Inorganic chemists often work with highly air- and water-sensitive compounds. The two most common and practical methods for air-free synthesis utilize either Schlenk lines or gloveboxes. This experiment will demonstrate how to perform simple manipulations on a Schlenk line with a focus on solvent preparation and transfer. Through the synthesis of a reactive Ti(III) metallocene complex, we will demonstrate a new, simple method to degas solvent as well as how to transfer solvent by cannula and by syringe on a Schlenk line. The synthesis of a Ti(III) metallocene compound 3 is shown in Figure 1.1 Compound 3 is highly reactive with O2, (see oxidation of compound 3 to Ti(IV) metallocene 4 shown in Figure 1). Therefore, it is important to run the synthesis under anaerobic conditions. The synthesis of target compound 3 can be monitored visually and progresses through one additional color change before arriving at the desired product, which is blue in color. If during the experiment there is an observed color change from blue to yellow (or green = blue + yellow), this is an indication that O2 entered the flask and that undesired oxidation of compound 3 to


 Inorganic Chemistry

12345678930
More Results...