Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Transforming Growth Factors: Hormonally active polypeptides that can induce the transformed phenotype when added to normal, non-transformed cells. They have been found in culture fluids from retrovirally transformed cells and in tumor-derived cells as well as in non-neoplastic sources. Their transforming activities are due to the simultaneous action of two otherwise unrelated factors, Transforming growth factor alpha and Transforming growth factor beta.
 JoVE In-Press

Chondrogenic Pellet Formation from Cord Blood-derived Induced Pluripotent Stem Cells

1CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Division of Rheumatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 2Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea

Video Coming Soon

JoVE 55988

 JoVE Neuroscience

Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice

1Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, 2Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 3Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, 4Curriculum in Genetics and Molecular Biology, University of North Carolina School of Medicine, 5Biological and Biomedical Sciences Program, University of North Carolina School of Medicine, 6Department of Radiation Oncology, Emory University School of Medicine, 7Department of Neurology, Neurosciences Center, University of North Carolina School of Medicine


JoVE 51763

 JoVE Biology

High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry

1Department of Biochemistry, Medical College of Wisconsin, 2Stanford Cardiovascular Institute, Stanford University School of Medicine, 3Department of Anesthesiology, Medical College of Wisconsin, 4Stem Cell and Regenerative Medicine Consortium, LKS Faculty of Medicine, Hong Kong University, 5Division of Cardiology, Johns Hopkins University School of Medicine, 6Cardiovascular Research Center, Biotechnology and Bioengineering Center, Medical College of Wisconsin


JoVE 52010

 JoVE In-Press

Optimized Protocol for the Extraction of Proteins from the Human Mitral Valve

1Centro Cardiologico Monzino IRCCS, 2Cardiovascular Tissue Bank of Milan, Centro Cardiologico Monzino IRCCS, 3Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, 4Department of Cardiovascular Disease, Development and Innovation Cardiac Surgery Unit, IRCCS Centro Cardiologico Monzino

Video Coming Soon

JoVE 55762

 JoVE Developmental Biology

An Enzyme- and Serum-free Neural Stem Cell Culture Model for EMT Investigation Suited for Drug Discovery

1Dept. of Biomedicine, Pharmacenter, University of Basel, 2Molecular Signalling and Gene Therapy, Narayana Nethralaya Foundation, Narayana Health City, 3Brain Ischemia and Regeneration, Department of Biomedicine, University Hospital Basel, 4Department of Neurosurgery, Klinikum Idar-Oberstein, 5Department of Neurosurgery and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, 6Department of Neurology, Laboratory of Molecular Neuro Oncology, University Hospital of Zurich


JoVE 54018

 JoVE Cancer Research

Establishment of Cancer Stem Cell Cultures from Human Conventional Osteosarcoma

1Department of Surgery and Translational Medicine (DCMT), University of Florence, 2Neurofarba Department, University of Florence, 3Department of Traumatology and General Orthopedics, Azienda Ospedaliera Universitaria Careggi


JoVE 53884

 JoVE In-Press

Differentiating Chondrocytes from Peripheral Blood-derived Human Induced Pluripotent Stem Cells

1Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, 2Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 3Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University

Video Coming Soon

JoVE 55722

 JoVE Developmental Biology

Large-Scale Production of Cardiomyocytes from Human Pluripotent Stem Cells Using a Highly Reproducible Small Molecule-Based Differentiation Protocol

1Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 2Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 3St. Vincent´s Clinical School, Faculty of Medicine, University of New South Wales, 4School of Biotechnology and Biomolecular Sciences, University of New South Wales, 5Department of Developmental Biology, University of Science and Culture, 6Heart Centre for Children, The Children´s Hospital at Westmead, 7Sydney Medical School, University of Sydney, 8Department of Developmental Biology, University of Science and Culture, Tehran, Iran


JoVE 54276

 JoVE Cancer Research

Utilizing Functional Genomics Screening to Identify Potentially Novel Drug Targets in Cancer Cell Spheroid Cultures

1The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, 2Division of Molecular Pathology, The Institute of Cancer Research, 3Institute of Cancer Sciences, University of Manchester


JoVE 54738

12345678984
More Results...
Waiting
simple hit counter