Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Tumor Cells, Cultured: Cells grown in vitro from neoplastic tissue. If they can be established as a Tumor cell line, they can be propagated in cell culture indefinitely.

Chick ex ovo Culture

JoVE 5157

One strength of the chicken (Gallus gallus domesticus) as a model organism for developmental biology is that the embryo develops outside the female and is easily accessible for experimental manipulation. Many techniques allow scientists to examine chicken embryos inside the eggshell (in ovo), but embryonic access can be limited at later stages of development. Fortunately, chicks can also be cultured ex ovo, or outside of the eggshell. The major advantage to ex ovo culture is greater access to tissues that might otherwise be obstructed by the shell or the orientation of the chick within the egg, especially for embryos in later stages of development. There are two principle strategies to ex ovo culture: whole yolk culture and explant culture. During whole yolk culture, the eggshell is cracked and the contents are transferred to a simple housing vessel. However, in explant culture methods, the embryo is excised from the yolk and mounted in the housing vessel to maintain membrane tension, which is important for normal development. Basic protocols for whole-yolk and explant techniques will be provided in this video, along with a discussion of the pros and cons of culturing chicks outside of the shell. Finally, experimental applications of ex ovo culture will be discussed, demonstrating how this


 Biology II

An Introduction to Cell Motility and Migration

JoVE 5643

Cell motility and migration play important roles in both normal biology and in disease. On one hand, migration allows cells to generate complex tissues and organs during development, but on the other hand, the same mechanisms are used by tumor cells to move and spread in a process known as cancer metastasis. One of the primary cellular machineries that make cell movement possible is an intracellular network of myosin and actin molecules, together known as “actomyosin”, which creates a contractile force to pull a cell in different directions.In this video, JoVE presents a historical overview of the field of cell migration, noting how early work on muscle contraction led to the discovery of the actomyosin apparatus. We then explore some of the questions researchers are still asking about cell motility, and review techniques used to study different aspects of this phenomenon. Finally, we look at how researchers are currently studying cell migration, for example, to better understand metastasis.


 Cell Biology

The TUNEL Assay

JoVE 5651

One of the hallmarks of apoptosis is the nuclear DNA fragmentation by nucleases. These enzymes are activated by caspases, the family of proteins that execute the cell death program. TUNEL assay is a method that takes advantage of this feature to detect apoptotic cells. In this assay, an enzyme called terminal deoxynucleotidyl transferase catalyzes the addition of dUTP nucleotides to the free 3’ ends of fragmented DNA. By using dUTPs that are labeled with chemical tags that can produce fluorescence or color, apoptotic cells can be specifically identified. JoVE’s video on the TUNEL assay begins by discussing how this technique can be used to detect apoptotic cells. We then go through a general protocol for performing TUNEL assays on tissue sections and visualizing the results using fluorescence microscopy. Finally, several applications of the assay to current research will be covered.


 Cell Biology

Fate Mapping

JoVE 5335

Fate mapping is a technique used to understand how embryonic cells divide, differentiate, and migrate during development. In classic fate mapping experiments, cells in different areas of an embryo are labeled with a chemical dye and then tracked to determine which tissues or structures they form. Technological improvements now allow for individual cells to be marked and traced throughout embryonic development and adulthood. This video reviews the concepts behind fate mapping, and then details a fate mapping protocol in zebrafish using photoactivatable fluorescent proteins. Finally, specific applications and modifications of this unique technique are discussed.


 Developmental Biology

High-sensitivity Detection of Micrometastases Generated by GFP Lentivirus-transduced Organoids Cultured from a Patient-derived Colon Tumor

1Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, 2Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, 3Atopy Research Center, Juntendo University Faculty of Medicine, 4Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, 5Department of Gastroenterology, Juntendo University Faculty of Medicine

JoVE 57374


 Cancer Research

Introduction to Fluorescence Microscopy

JoVE 5040

Fluorescence microscopy is a very powerful analytical tool that combines the magnifying properties of light microscopy with visualization of fluorescence. Fluorescence is a phenomenon that involves absorbance and emission of a small range of light wavelengths by a fluorescent molecule known as a fluorophore. Fluorescence microscopy is accomplished in conjunction with the basic light microscope by the addition of a powerful light source, specialized filters, and a means of fluorescently labeling a sample. This video describes the basic principles behind fluorescence microscopy including the mechanism of fluorescence, the Stoke’s shift, and photobleaching. It also gives examples of the numerous ways to fluorescently label a sample including the use of fluorescently tagged antibodies and proteins, nucleic acid fluorescent dyes with, and the addition of naturally fluorescent proteins to a specimen. The major components of the fluorescence microscope including a xenon or mercury light source, light filters, the dichroic mirror, and use of the shutter to illuminate the sample are all described. Finally, examples of some of the many applications for fluorescence microscopy are shown.


 General Laboratory Techniques

A Brain Tumor/Organotypic Slice Co-culture System for Studying Tumor Microenvironment and Targeted Drug Therapies

1Department of Cancer Biology, Dana-Farber Cancer Institute, 2Department of Pediatrics, Children's Hospital, 3Department of Biostatistics & Computational Biology, Dana-Farber Cancer Institute, 4Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, 5Department of Neurosurgery, Children's Hospital, 6Center for Molecular Oncologic Pathology, Department of Medical Oncology, Dana-Farber Cancer Institute

JoVE 53304


 Medicine

Imaging- and Flow Cytometry-based Analysis of Cell Position and the Cell Cycle in 3D Melanoma Spheroids

1The Centenary Institute, 2Sydney Medical School, University of Sydney, 3The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, 4Department of Dermatology, Royal Prince Alfred Hospital, 5Discipline of Dermatology, University of Sydney

JoVE 53486


 Medicine

A Combined 3D Tissue Engineered In Vitro/In Silico Lung Tumor Model for Predicting Drug Effectiveness in Specific Mutational Backgrounds

1Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, 2Department of Cardiothoracic Surgery, University Hospital Wuerzburg, 3Department of Bioinformatics, University Wuerzburg, 4Translational Center Wuerzburg, Fraunhofer Institute Interfacial Engineering and Biotechnology IGB

JoVE 53885


 Bioengineering

An Introduction to Developmental Neurobiology

JoVE 5207

Developmental neuroscience is a field that explores how the nervous system is formed, from early embryonic stages through adulthood. Although it is known that neural progenitor cells follow predictable stages of proliferation, differentiation, migration, and maturation, the mechanisms controlling the progression through each stage are incompletely understood. Studying development is not only important for understanding how complex structures are assembled, but also for characterizing and treating developmental disorders. Since injury repair processes are similar to those that occur in development, this field is also a promising source of insight into when and how nervous system tissues regenerate.This video provides a brief overview of the field of developmental neuroscience, including some key experiments that have advanced our understanding of the mechanisms controlling the formation of early neural tissue and the further specialization of those cells into discrete subsets of neurons. The discussion focuses on prominent questions that developmental biologists are asking and then demonstrates some of the methods that they use to investigate these questions. Finally, applications of the techniques are presented to provide insight into what it means to be a developmental neuroscientist today. The range of experiments demo


 Neuroscience

A Unified Methodological Framework for Vestibular Schwannoma Research

1Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, 2Department of Otolaryngology, Harvard Medical School, 3Department of Otolaryngology, Vienna General Hospital, Medical University of Vienna, 4Program in Speech and Hearing Bioscience and Technology, Harvard Medical School

JoVE 55827


 Cancer Research

In Vivo Model for Testing Effect of Hypoxia on Tumor Metastasis

1Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 2Department of Nursing, Georgetown University, School of Nursing and Health Studies, 3Department of Human Science, Georgetown University, School of Nursing and Health Studies, 4School of Medicine, Georgetown University Medical Center, 5Department of Pathology and Neuropathology, Medical University of Gdańsk, 6Department of Oncology, Georgetown University Medical Center, 7Department of Pathology, Georgetown University Medical Center

JoVE 54532


 Cancer Research

Generation of Microtumors Using 3D Human Biogel Culture System and Patient-derived Glioblastoma Cells for Kinomic Profiling and Drug Response Testing

1Biomedical Engineering, University of Alabama at Birmingham, 2Radiation Oncology, University of Alabama at Birmingham, 3Neurosurgery, University of Alabama at Birmingham, 4Vivo Biosciences, Inc.

JoVE 54026


 Medicine

Using the BLT Humanized Mouse as a Stem Cell based Gene Therapy Tumor Model

1Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, 2UCLA AIDS Institute, 3Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, 4Department of Medical and Molecular Pharmacology, David Geffen School of Medicine at UCLA, 5Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA

JoVE 4181


 Immunology and Infection

Characterization of Tumor Cells Using a Medical Wire for Capturing Circulating Tumor Cells: A 3D Approach Based on Immunofluorescence and DNA FISH

1Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 2Associazione Annastaccatolisa Onlus, 3Nuclear Medicine Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS

JoVE 56936


 Cancer Research

An Enzyme- and Serum-free Neural Stem Cell Culture Model for EMT Investigation Suited for Drug Discovery

1Dept. of Biomedicine, Pharmacenter, University of Basel, 2Molecular Signalling and Gene Therapy, Narayana Nethralaya Foundation, Narayana Health City, 3Brain Ischemia and Regeneration, Department of Biomedicine, University Hospital Basel, 4Department of Neurosurgery, Klinikum Idar-Oberstein, 5Department of Neurosurgery and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, 6Department of Neurology, Laboratory of Molecular Neuro Oncology, University Hospital of Zurich

JoVE 54018


 Developmental Biology

Target Cell Pre-enrichment and Whole Genome Amplification for Single Cell Downstream Characterization

1Institute of Cell Biology, Histology and Embryology, Medical University of Graz, 2Institute of Pathology, Medical University of Graz, 3Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 4Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 5Sahlgrenska Cancer Center, University of Gothenburg

JoVE 56394


 Cancer Research

12345678911
More Results...