Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Vapor Pressure: The contribution to barometric Pressure of gaseous substance in equilibrium with its solid or liquid phase.

Meso-Scale Particle Image Velocimetry Studies of Neurovascular Flows In Vitro

1Department of Mechanical Engineering, University of California, Riverside, 2Division of Interventional Neuroradiology, University of California, Los Angeles, 3Materials Science and Engineering Program, University of California, Riverside, 4Department of Bioengineering, University of California, Riverside

JoVE 58902


 Bioengineering

A Novel Method for the Pentosan Analysis Present in Jute Biomass and Its Conversion into Sugar Monomers Using Acidic Ionic Liquid

1Department of Chemical Engineering, National Taiwan University, 2International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 3Australian Institute for Innovative Materials (AIIM), University of Wollongong, 4Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, 5School of Chemical Engineering & Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, 6Department of Plant and Environmental New Resources, Kyung Hee University

JoVE 57613


 Environment

Utilization of Capsules for Negative Staining of Viral Samples within Biocontainment

1Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 2Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 3Microscopy Innovations LLC

JoVE 56122


 Immunology and Infection

Assessment of Pulmonary Capillary Blood Volume, Membrane Diffusing Capacity, and Intrapulmonary Arteriovenous Anastomoses During Exercise

1Division of Pulmonary Medicine, University of Alberta, 2Faculty of Physical Education and Recreation, University of Alberta, 3Divisions of Critical Care and Cardiology, University of Alberta, 4Faculty of Rehabilitation Medicine, University of Alberta, 5G.F. MacDonald Centre for Lung Health

JoVE 54949


 Medicine

Angle-resolved Photoemission Spectroscopy At Ultra-low Temperatures

1Institute for Solid State Research, IFW-Dresden, 2Institute of Metal Physics of National Academy of Sciences of Ukraine, 3Diamond Light Source LTD, 4Department of Physics, University of Johannesburg, 5CNR-SPIN, and Dipartimento di Fisica "E. R. Caianiello", Università di Salerno, 6Institute of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne

JoVE 50129


 Engineering

Conducting Miller-Urey Experiments

1School of Chemistry and Biochemistry, Georgia Institute of Technology, 2Earth-Life Science Institute, Tokyo Institute of Technology, 3Institute for Advanced Study, 4Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, 5Goddard Center for Astrobiology, NASA Goddard Space Flight Center, 6Geosciences Research Division, Scripps Institution of Oceanography, University of California at San Diego

JoVE 51039


 Chemistry

Quantitative Detection of Trace Explosive Vapors by Programmed Temperature Desorption Gas Chromatography-Electron Capture Detector

1Chemical Sensing & Fuel Technology, Chemistry Division, U.S. Naval Research Laboratory, 2NOVA Research, Inc., 3Bio/Analytical Chemistry, Chemistry Division, U.S. Naval Research Laboratory, 4Navy Technology Center for Safety and Survivability, Chemistry Division, U.S. Naval Research Laboratory

JoVE 51938


 Chemistry

Fractional Distillation

JoVE 5700

Source: Laboratory of Dr. Nicholas Leadbeater — University of Connecticut 

Distillation is perhaps the most common laboratory technique employed by chemists for the purification of organic liquids. Compounds in a mixture with different boiling points separate into individual components when the mixture is carefully distilled. The two main types of distillation are "simple distillation" and "fractional distillation", and both are widely used in organic chemistry laboratories. Simple distillation is used when the liquid is (a) relatively pure (containing no more than 10% liquid contaminants), (b) has a non-volatile component, such as a solid contaminant, or (c) is mixed with another liquid with a boiling point that differs by at least 25 °C. Fractional distillation is used when separating mixtures of liquids whose boiling points are more similar (separated by less than 25 °C). This video will detail the fractional distillation of a mixture of two common organic solvents, cyclohexane and toluene.


 Organic Chemistry

Performing 1D Thin Layer Chromatography

JoVE 5499

Source: Laboratory of Dr. Yuri Bolshan — University of Ontario Institute of Technology

Thin layer chromatography (TLC) is a chromatographic method used to separate mixtures of non-volatile compounds. A TLC plate consists of a thin layer of adsorbent material (the stationary phase) fixed to an appropriate solid support such as plastic, aluminum, or glass1. The sample(s) and reference compound(s) are dissolved in an appropriate solvent and applied near the bottom edge of the TLC plate in small spots. The TLC plate is developed by immersing the bottom edge in the developing solvent consisting of an appropriate mobile phase. Capillary action allows the mobile phase to move up the adsorbent layer. As the solvent moves up the TLC plate, it carries with it the components of each spot and separates them based on their physical interactions with the mobile and stationary phases.


 Organic Chemistry

Determining Rate Laws and the Order of Reaction

JoVE 10193

Source: Laboratory of Dr. Neal Abrams — SUNY College of Environmental Science and Forestry

All chemical reactions have a specific rate defining the progress of reactants going to products. This rate can be influenced by temperature, concentration, and the physical properties of the reactants. The rate also includes the intermediates and transition states that are formed but are neither the reactant nor the product. The rate law defines the role of each reactant in a reaction and can be used to mathematically model the time required for a reaction to proceed. The general form of a rate equation is shown below:     where A and B are concentrations of different molecular species, m and n are reaction orders, and k is the rate constant. The rate of nearly every reaction changes over time as reactants are depleted, making effective collisions less likely to occur. The rate constant, however, is fixed for any single reaction at a given temperature. The reaction order illustrates the number of molecular species involved in a reaction. It is very important to know the rate law, including rate constant and reaction order, which can only be deter


 General Chemistry

Schlenk Lines Transfer of Solvents

JoVE 5679

Source: Hsin-Chun Chiu and Tyler J. Morin, laboratory of Dr. Ian Tonks—University of Minnesota Twin Cities

Schlenk lines and high vacuum lines are both used to exclude moisture and oxygen from reactions by running reactions under a slight overpressure of inert gas (usually N2 or Ar) or under vacuum. Vacuum transfer has been developed as a method separate solvents (other volatile reagents) from drying agents (or other nonvolatile agents) and dispense them to reaction or storage vessels while maintaining an air-free environment. Similar to thermal distillations, vacuum transfer separates solvents by vaporizing and condensing them in another receiving vessel; however, vacuum transfers utilize the low pressure in the manifolds of Schlenk and high vacuum lines to lower boiling points to room temperature or below, allowing for cryogenic distillations. This technique can provide a safer alternative to thermal distillation for the collection of air- and moisture-free solvents. After the vacuum transfer, the water content of the collected solvent can be tested quantitatively by Karl Fischer titration, qualitatively by titration with a Na/Ph2CO solution, or by 1H NMR spectroscopy.


 Organic Chemistry

Solutions and Concentrations

JoVE 10078

Source: Laboratory of Dr. Michael Evans — Georgia Institute of Technology

A solution is a homogeneous mixture containing some components in small amounts, called solutes, and one component in a large amount, called the solvent. Solid-liquid solutions contain one or more solid solutes dissolved in a liquid solvent. Solutions are ubiquitous in chemistry: they are used to store and handle small amounts of material, carry out chemical reactions, and develop materials with controllable properties. The density of a solute in a solution is known as the concentration of the solute. Concentration can be expressed in several ways, differing in the units used to convey the amounts of solute, solvent, and solution. This demonstration illustrates how to prepare a sucrose solution with a target concentration using precise analytical techniques. Additionally, various measures of the concentration of this solution are presented and explained.


 General Chemistry

Freezing-Point Depression to Determine an Unknown Compound

JoVE 10137

Source: Laboratory of Lynne O' Connell — Boston College

When a solid compound is dissolved in a solvent, the freezing point of the resulting solution is lower than that of the pure solvent. This phenomenon is known as freezing-point depression, and the change in temperature is directly related to the molecular weight of the solute. This experiment is designed to find the identity of an unknown compound by using the phenomenon of freezing-point depression to determine its molecular weight. The compound will be dissolved in cyclohexane, and the freezing point of this solution, as well as that of pure cyclohexane, will be measured. The difference between these two temperatures allows for the calculation of the molecular weight of the unknown substance.


 General Chemistry

Experimental Approach for Determining Semiconductor/liquid Junction Energetics by Operando Ambient-Pressure X-ray Photoelectron Spectroscopy

1Division of Chemistry and Chemical Engineering, California Institute of Technology, 2Joint Center for Artificial Photosynthesis, California Institute of Technology, 3Advanced Light Source, Lawrence Berkeley National Laboratory, 4Beckman Institute, California Institute of Technology

Video Coming Soon

JoVE 54129


 JoVE In-Press

12
More Results...