Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Vibrio cholerae: The etiologic agent of Cholera.

Lysogenic Cycle of Bacteriophages

JoVE 10824

In contrast to the lytic cycle, phages infecting bacteria via the lysogenic cycle do not immediately kill their host cell. Instead, they combine their genome with the host genome, allowing the bacteria to replicate the phage DNA along with the bacterial genome. The incorporated copy of the phage genome is called the prophage. Some prophages can re-activate and enter the lytic cycle. This often occurs in response to a perturbation, such as DNA damage, but can also transpire in the absence of external cues. In some cases, the genes encoded by prophages can alter the phenotype of the infected bacterium, a process known as lysogenic conversion. Some phages encode proteins or toxins called virulence factors that can facilitate bacterial infections. Through lysogenic conversion, normally non-pathogenic bacteria can become highly virulent via infection by a phage carrying virulence factors. For example, such phages are largely responsible for the pathogenicity of the bacterial species that cause botulism (Clostridium botulinum), diphtheria (Corynebacterium diphtheriae), and cholera (Vibrio cholerae). Without lysogenic conversion, these bacteria do not usually cause disease. A particularly well-studied example of lysogenic conversion is that of the Escherichia coli strain O157:H7. Several massive food recalls have stemmed

 Core: Viruses

High-throughput Parallel Sequencing to Measure Fitness of Leptospira interrogans Transposon Insertion Mutants During Golden Syrian Hamster Infection

1Veterans Affairs Greater Los Angeles Healthcare System, 2Departments of Medicine, David Geffen School of Medicine at University of California Los Angeles, 3Departments of Urology, David Geffen School of Medicine at University of California Los Angeles, 4Departments of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles

JoVE 56442

 Immunology and Infection

Development of an Electrochemical DNA Biosensor to Detect a Foodborne Pathogen

1Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 2Laboratory of Functional Device, Institute of Advanced Technology, Universiti Putra Malaysia, 3Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 4La Trobe Institute for Molecular Science, La Trobe University

JoVE 56585

 Bioengineering
More Results...