Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal

Filter by science education

 
 
Visual Acuity: Clarity or sharpness of Ocular vision or the ability of the eye to see fine details. Visual acuity depends on the functions of Retina, neuronal transmission, and the interpretative ability of the brain. Normal visual acuity is expressed as 20/20 indicating that one can see at 20 feet what should normally be seen at that distance. Visual acuity can also be influenced by brightness, color, and contrast.

Cranial Nerves Exam I (I-VI)

JoVE 10091

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

During each section of the neurological testing, the examiner uses the powers of observation to assess the patient. In some cases, cranial nerve dysfunction is readily apparent: a patient might mention a characteristic chief complaint (such as loss of smell or diplopia), or a visually evident physical sign of cranial nerve involvement, such as in facial nerve palsy. However, in many cases a patient's history doesn't directly suggest cranial nerve pathologies, as some of them (such as sixth nerve palsy) may have subtle manifestations and can only be uncovered by a careful neurological exam. Importantly, a variety of pathological conditions that are associated with alterations in mental status (such as some neurodegenerative disorders or brain lesions) can also cause cranial nerve dysfunction; therefore, any abnormal findings during a mental status exam should prompt a careful and complete neurological exam. The cranial nerve examination is applied neuroanatomy. The cranial nerves are symmetrical; therefore, while performing the examination, the examiner should compare each side to the other. A physician should approach the examination in a


 Physical Examinations III

Regenerative Therapy by Suprachoroidal Cell Autograft in Dry Age-Related Macular Degeneration: Preliminary in Vivo Report

1Low Vision Research Centre of Milan, 2Department of Ophthalmology, A. Fiorini Hospital, Sapienza University of Rome, 3Glaucoma and Low Vision Study Center, Department of General Surgery and Organ Transplants, University of Bologna, 4Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome

Video Coming Soon

JoVE 56469


 JoVE In-Press

The Multiple Sclerosis Performance Test (MSPT): An iPad-Based Disability Assessment Tool

1Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic Foundation, 2Center for Brain Health, Cleveland Clinic Foundation, 3Quantitative Health Sciences, Cleveland Clinic Foundation, 4Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation

JoVE 51318


 Medicine

Eye Exam

JoVE 10149

Source: Richard Glickman-Simon, MD, Assistant Professor, Department of Public Health and Community Medicine, Tufts University School of Medicine, MA

Proper evaluation of the eyes in a general practice setting involves vision testing, orbit inspection, and ophthalmoscopic examination. Before beginning the exam, it is crucial to be familiar with the anatomy and physiology of the eye. The upper eyelid should be slightly over the iris, but it shouldn't cover the pupil when open; the lower lid lies below the iris. The sclera normally appears white or slightly buff in color. The appearance of conjunctiva, a transparent membrane covering the anterior sclera and the inner eyelids, is a sensitive indicator of ocular disorders, such as infections and inflammation. The tear-producing lacrimal gland lies above and lateral to the eyeball. Tears spread down and across the eye to drain medially into two lacrimal puncta before passing into the lacrimal sac and nasolacrimal duct to the nose. The iris divides the anterior from the posterior chamber. Muscles of the iris control the size of the pupil, and muscles of the ciliary body behind it control the focal length of the lens. The ciliary body also produces aqueous humor, which largely determines intraocular pressure (Figure 1). Cranial nerve


 Physical Examinations II

Nonconscious Mimicry Occurs when Affiliation Goals are Present

JoVE 10335

Source: Diego Reinero & Jay Van Bavel—New York University

People are social chameleons and regularly engage in nonconscious behavioral mimicry. This occurs when an individual unwittingly imitates the behaviors of another person, such as crossing one's legs moments after a person sitting adjacent does so, or adjusting one's body posture to match a conversation partner. Rapport between two people increases behavioral mimicry, just as mimicry also increases rapport. Psychologists have posited that this mimicry is attributed to a perception-behavior link;1 seeing a person engage in a behavior activates that behavioral representation, which then makes the perceiver more likely to engage in that behavior him- or herself. The following experiment expands on these previous findings by testing whether people, without intention or awareness, use mimicry to their advantage. Because goals activate behavioral strategies and plans of action that help people pursue those goals,2 Lakin and Chartrand hypothesized that individuals would mimic another person more when they have a goal to affiliate than when they do not.3


 Social Psychology

Vision Training Methods for Sports Concussion Mitigation and Management

1Neurology and Rehabilitative Medicine, University of Cincinnati, 2Division of Sports Medicine, Department of Orthopaedic Surgery, University of Cincinnati, 3Department of Athletics, University of Cincinnati, 4Department of Neurosurgery, University of Cincinnati, 5College of Education, Criminal Justice, and Human Services, University of Cincinnati, 6Division of Sports Medicine, Cincinnati Children's Hospital Medical Center

JoVE 52648


 Behavior

Lateral Canthotomy and Inferior Cantholysis

JoVE 10266

Source: James W Bonz, MD, Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, USA

Lateral canthotomy is a potentially eyesight-saving procedure when performed emergently for an orbital compartment syndrome. An orbital compartment syndrome results from a buildup of pressure behind the eye; as pressure mounts, both the optic nerve and its vascular supply are compressed, rapidly leading to nerve damage and blindness if the pressure is not quickly relieved. The medial and lateral canthal tendons hold the eyelids firmly in place forming an anatomical compartment with limited space for the globe. In an orbital compartment syndrome, pressure rapidly increases as the globe is forced against the eyelids. Lateral canthotomy is the procedure by which the lateral canthal tendon is severed, thereby releasing the globe from its fixed position. Often, severing of the lateral canthal tendon alone is not enough to release the globe and the inferior portion (inferior crus) of the lateral canthal tendon also needs to be severed (inferior cantholysis). This increases precious space behind the eye by allowing the globe to become more proptotic, resulting in decompression. Most frequently, orbital compartment syndrome is the result of acute facial trauma, with the subsequent development of a retrobulbar


 Emergency Medicine and Critical Care

Isolation of Primary Murine Retinal Ganglion Cells (RGCs) by Flow Cytometry

1Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, 2Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 3Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 4Department of Pharmaceutical Sciences, University of Tennessee Health Science Center

JoVE 55785


 Bioengineering

Vibratome Sectioning Mouse Retina to Prepare Photoreceptor Cultures

1Department of Genetics, UMR_S 968, Institut de la Vision, 2Department of Visual Information, UMR_S 968, Institut de la Vision, 3Exploratory Team, UMR_S 968, Institut de la Vision, 4Sorbonne Universités, Paris 06, UMR_S 968, Institut de la Vision, 5INSERM, U968, Institut de la Vision, 6CNRS, UMR_7210, Institut de la Vision

JoVE 51954


 Neuroscience

12345678931
More Results...