Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Visual Acuity: Clarity or sharpness of Ocular vision or the ability of the eye to see fine details. Visual acuity depends on the functions of Retina, neuronal transmission, and the interpretative ability of the brain. Normal visual acuity is expressed as 20/20 indicating that one can see at 20 feet what should normally be seen at that distance. Visual acuity can also be influenced by brightness, color, and contrast.

Vision Training Methods for Sports Concussion Mitigation and Management

1Neurology and Rehabilitative Medicine, University of Cincinnati, 2Division of Sports Medicine, Department of Orthopaedic Surgery, University of Cincinnati, 3Department of Athletics, University of Cincinnati, 4Department of Neurosurgery, University of Cincinnati, 5College of Education, Criminal Justice, and Human Services, University of Cincinnati, 6Division of Sports Medicine, Cincinnati Children's Hospital Medical Center

JoVE 52648


 Behavior

Development and Implementation of a Multi-Disciplinary Technology Enhanced Care Pathway for Youth and Adults with Concussion

1Department of Biomedical Engineering, Cleveland Clinic Foundation, 2Center for Neurological Restoration, Cleveland Clinic Foundation, 3Office of Clinical Transformation, Cleveland Clinic Foundation, 4Concussion Center, Cleveland Clinic Foundation, 5Neurological Institute Center for Outcomes Research, Cleveland Clinic Foundation, 6Quantitative Health Sciences, Cleveland Clinic Foundation

Video Coming Soon

JoVE 58962


 JoVE In-Press

Using Optical Coherence Tomography and Optokinetic Response As Structural and Functional Visual System Readouts in Mice and Rats

1Department of Neurology, Heinrich-Heine-University Düsseldorf, 2Department of Cell Physiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 3Division of Neuroinflammation and Glial Biology, Department of Neurology, University of California San Francisco

Video Coming Soon

JoVE 58571


 JoVE In-Press

Regenerative Therapy by Suprachoroidal Cell Autograft in Dry Age-related Macular Degeneration: Preliminary In Vivo Report

1Low Vision Research Centre of Milan, 2Department of Ophthalmology, A. Fiorini Hospital, Sapienza University of Rome, 3Glaucoma and Low Vision Study Center, Department of General Surgery and Organ Transplants, University of Bologna, 4Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome

JoVE 56469


 Medicine

Corneal Tissue Engineering: An In Vitro Model of the Stromal-nerve Interactions of the Human Cornea

1Department of Cell Biology, University of Oklahoma Health Sciences Center, 2Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 3Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center

JoVE 56308


 Developmental Biology

Scanning Light Scattering Profiler (SLPS) Based Methodology to Quantitatively Evaluate Forward and Backward Light Scattering from Intraocular Lenses

1Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 2Optical Therapeutics and Medical Nanophotonics Laboratory, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration

JoVE 55421


 Engineering

The Multiple Sclerosis Performance Test (MSPT): An iPad-Based Disability Assessment Tool

1Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic Foundation, 2Center for Brain Health, Cleveland Clinic Foundation, 3Quantitative Health Sciences, Cleveland Clinic Foundation, 4Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation

JoVE 51318


 Medicine

Vibratome Sectioning Mouse Retina to Prepare Photoreceptor Cultures

1Department of Genetics, UMR_S 968, Institut de la Vision, 2Department of Visual Information, UMR_S 968, Institut de la Vision, 3Exploratory Team, UMR_S 968, Institut de la Vision, 4Sorbonne Universités, Paris 06, UMR_S 968, Institut de la Vision, 5INSERM, U968, Institut de la Vision, 6CNRS, UMR_7210, Institut de la Vision

JoVE 51954


 Neuroscience

Cranial Nerves Exam II (VII-XII)

JoVE 10005

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

The cranial nerve examination follows the mental status evaluation in a neurological exam. However, the examination begins with observations made upon greeting the patient. For example, weakness of the facial muscles (which are innervated by cranial nerve VII) can be readily apparent during the first encounter with the patient. Cranial nerve VII (the facial nerve) also has sensory branches, which innervate the taste buds on the anterior two-thirds of the tongue and the medial aspect of the external auditory canal. Therefore, finding ipsilateral taste dysfunction in a patient with facial weakness confirms the involvement of cranial nerve VII. In addition, knowledge of the neuroanatomy helps the clinician to localize the level of the lesion: unilateral weakness of the lower facial muscles suggests a supranuclear lesion on the opposite side, while lesions involving the nuclear or infranuclear portion of the facial nerve manifest with an ipsilateral paralysis of all the facial muscles on the involved side. Cranial nerve VIII (the acoustic nerve) has two divisions: the hearing (cochlear) division and the vestibular division, which innervates the semi


 Physical Examinations III

Cranial Nerves Exam I (I-VI)

JoVE 10091

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

During each section of the neurological testing, the examiner uses the powers of observation to assess the patient. In some cases, cranial nerve dysfunction is readily apparent: a patient might mention a characteristic chief complaint (such as loss of smell or diplopia), or a visually evident physical sign of cranial nerve involvement, such as in facial nerve palsy. However, in many cases a patient's history doesn't directly suggest cranial nerve pathologies, as some of them (such as sixth nerve palsy) may have subtle manifestations and can only be uncovered by a careful neurological exam. Importantly, a variety of pathological conditions that are associated with alterations in mental status (such as some neurodegenerative disorders or brain lesions) can also cause cranial nerve dysfunction; therefore, any abnormal findings during a mental status exam should prompt a careful and complete neurological exam. The cranial nerve examination is applied neuroanatomy. The cranial nerves are symmetrical; therefore, while performing the examination, the examiner should compare each side to the other. A physician should approach the examination in a


 Physical Examinations III

12
More Results...