Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Visual Fields: The total area or space visible in a person's peripheral vision with the eye looking straightforward.
 JoVE Behavior

Vision Training Methods for Sports Concussion Mitigation and Management

1Neurology and Rehabilitative Medicine, University of Cincinnati, 2Division of Sports Medicine, Department of Orthopaedic Surgery, University of Cincinnati, 3Department of Athletics, University of Cincinnati, 4Department of Neurosurgery, University of Cincinnati, 5College of Education, Criminal Justice, and Human Services, University of Cincinnati, 6Division of Sports Medicine, Cincinnati Children's Hospital Medical Center


JoVE 52648

 Science Education: Essentials of Neuropsychology

The Split Brain

JoVE Science Education

Source: Laboratories of Jonas T. Kaplan and Sarah I. Gimbel—University of Southern California

The study of how damage to the brain affects cognitive functioning has historically been one of the most important tools for cognitive neuroscience. While the brain is one of the most well protected parts of the body, there are many events that can affect the functioning of the brain. Vascular issues, tumors, degenerative diseases, infections, blunt force traumas, and neurosurgery are just some of the underlying causes of brain damage, all of which may produce different patterns of tissue damage that affect brain functioning in different ways. The history of neuropsychology is marked by several well-known cases that led to advances in the understanding of the brain. For instance, in 1861 Paul Broca observed how damage to the left frontal lobe resulted in aphasia, an acquired language disorder. As another example, a great deal about memory has been learned from patients with amnesia, such as the famous case of Henry Molaison, known for many years in the neuropsychology literature as "H.M.," whose temporal lobe surgery led to a profound deficit in forming certain kinds of new memories. While the observation and testing of patients with focal brain damage has provi

 Science Education: Essentials of Physical Examinations III

Cranial Nerves Exam I (I-VI)

JoVE Science Education

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

During each section of the neurological testing, the examiner uses the powers of observation to assess the patient. In some cases, cranial nerve dysfunction is readily apparent: a patient might mention a characteristic chief complaint (such as loss of smell or diplopia), or a visually evident physical sign of cranial nerve involvement, such as in facial nerve palsy. However, in many cases a patient's history doesn't directly suggest cranial nerve pathologies, as some of them (such as sixth nerve palsy) may have subtle manifestations and can only be uncovered by a careful neurological exam. Importantly, a variety of pathological conditions that are associated with alterations in mental status (such as some neurodegenerative disorders or brain lesions) can also cause cranial nerve dysfunction; therefore, any abnormal findings during a mental status exam should prompt a careful and complete neurological exam. The cranial nerve examination is applied neuroanatomy. The cranial nerves are symmetrical; therefore, while performing the examination, the examiner should compare each side to the other. A physician should approach the examination in a

 JoVE Medicine

Interictal High Frequency Oscillations Detected with Simultaneous Magnetoencephalography and Electroencephalography as Biomarker of Pediatric Epilepsy

1Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 2Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 3Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, 4Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School


JoVE 54883

 JoVE Behavior

Visualization Method for Proprioceptive Drift on a 2D Plane Using Support Vector Machine

1Applied Brain Science Laboratory, Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2Department of Informatics, Graduate School of Informatics and Engineering, The University of Electro-Communications, 3Department of Media and Image Technology, Faculty of Engineering, Tokyo Polytechnic University


JoVE 53970

 JoVE Neuroscience

Analyzing Dendritic Morphology in Columns and Layers

1Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), 2Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health (NIH), 3Biomedical Imaging Research Services Section, Center for Information Technology, National Institutes of Health (NIH)


JoVE 55410

 JoVE Neuroscience

Functional Imaging of Auditory Cortex in Adult Cats using High-field fMRI

1Department of Physiology and Pharmacology, University of Western Ontario, 2Department of Psychology, University of Western Ontario, 3Department of Medical Biophysics, University of Western Ontario, 4Brain and Mind Institute, University of Western Ontario, 5Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, 6Cerebral Systems Laboratory, University of Western Ontario, 7National Centre for Audiology, University of Western Ontario


JoVE 50872

 JoVE Environment

Removal of Trace Elements by Cupric Oxide Nanoparticles from Uranium In Situ Recovery Bleed Water and Its Effect on Cell Viability

1Division of Physical Therapy, Department of Orthopedics & Rehabilitation, University of New Mexico, 2Department of Ecosystem Science and Management, University of Wyoming, 3School of Pharmacy, University of Wyoming, 4Department of Environmental and Radiological Health Sciences, Colorado State University, 5Center for Environmental Medicine, Colorado State University, 6College of Pharmacy, California Northstate University


JoVE 52715

 JoVE Medicine

Voluntary Breath-hold Technique for Reducing Heart Dose in Left Breast Radiotherapy

1Department of Radiotherapy, Royal Marsden NHS Foundation Trust, 2Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, 3Clinical Trials and Statistics Unit (ICR-CTSU), Institute of Cancer Research, Sutton, UK, 4Division of Radiotherapy and Imaging, Institute of Cancer Research, Sutton, UK


JoVE 51578

 Science Education: Essentials of Sensation and Perception

Finding Your Blind Spot and Perceptual Filling-in

JoVE Science Education

Source: Laboratory of Jonathan Flombaum—Johns Hopkins University

In the back of everyone's eye is a small piece of neural tissue called the retina. The retina has photosensitive cells that respond to stimulation by light. The responses of these cells are sent into the brain through the optic nerve, a bundle of neural fibers. In each retina there is a place somewhere in the periphery where the outputs from retinal cells collect and the bundled optic nerve exits to the brain. At that location, there is no photosensitivity-whatever light reflects from the world and lands in that position does not produce a signal in the brain. As a result, humans have a blind spot, a place in the visual field for which they don't process incoming stimuli. However, people are not aware that they have blind spots; there is not an empty hole in the visual images in front of the eyes. So what do people see in their blind spots? The brain actually fills-in missing input based on the surroundings. This video demonstrates how to find a person's blind spot, and how to investigate the mechanisms of perceptual filling-in.

 JoVE Behavior

Flat-floored Air-lifted Platform: A New Method for Combining Behavior with Microscopy or Electrophysiology on Awake Freely Moving Rodents

1Neuroscience Center, University of Helsinki, 2Neurotar LTD, 3A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 4Laboratory Animal Center, University of Helsinki


JoVE 51869

 JoVE Neuroscience

The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism

1Department of Psychology, University of Montréal, 2Montreal Neurological Institute, McGill University, 3Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota


JoVE 51631

12345678942
More Results...
Waiting
simple hit counter