Video Article November 2015 - This Month in JoVE: Drosophila Social Space, Structured Rehabilitation for Multifunctional Prosthetics, and Thermal Imaging in Wild Birds

Wendy Chao¹, Aaron Kolski-Andreaco²

¹Department of Ophthalmology, Massachusetts Eye and Ear

²JoVE Content Production

Correspondence to: Aaron Kolski-Andreaco at aaron.kolski-andreaco@jove.com

URL: https://www.jove.com/video/5758 DOI: doi:10.3791/5758

Keywords: This Month in JoVE, Issue 105,

Date Published: 11/3/2015

Citation: Chao, W., Kolski-Andreaco, A. November 2015 - This Month in JoVE: Drosophila Social Space, Structured Rehabilitation for Multifunctional Prosthetics, and Thermal Imaging in Wild Birds. *J. Vis. Exp.* (105), e5758, doi:10.3791/5758 (2015).

Abstract

Here's a look at what's coming up in the November 2015 issue of JoVE: The Journal of Visualized Experiments.

In JoVE Neuroscience, we know that fruit flies (*Drosophila melanogaster*)are a lot like humans in many ways-especially because they like their personal space. And in fruit flies, this preferred social distance can be measured using the social space assay. McNiel *et al.* demonstrate this straightforward protocol, which requires only simple equipment and experimental setups. Flies are blown into a social chamber and forced to form a tight group. Then they're allowed to take their preferred distance from one another. These distances are measured and processed with free online software (ImageJ). This social space assay provides a simple yet powerful paradigm for analyzing the underlying neurogenetics and environmental factors of social behavior.

In JoVE Behavior, humans have a natural ability to acquire new motor skills, and this ability is crucial for upper limb amputees as they learn the complex control schemes for advanced multifunctional prosthetics. This month, Roche *et al.* present a case study of a structured rehabilitation method, which aims to improve multifunctional prosthetic control. Their subject underwent a structured protocol of imitation, repetition, and reinforcement learning. The subject demonstrated improvement in a widely used hand function test. This study suggests that a structured rehabilitation method may facilitate proficiency for multifunctional prosthetic control, and provides basis for larger clinical studies.

Stress is a major concept in JoVE Behavior, and comprises various physiological responses to challenges. Among other responses, stress increases body temperature, which provides a quantitative measure of this response. However, the very act of measuring body temperature can be stressful to subjects, especially if they're wild animals. So Jerem *et al.* present a protocol for noninvasively measuring temperature in wild birds using infrared thermography. Their set-up is equipped with bird food and an infrared camera. This takes a thermal video of the bird before and after the researcher remotely closes the box, which acts as a mild acute stressor. The skin around the bird's eye is the warmest area in the image, and this protocol provides a time series of eye-region temperature with fine temporal resolution. With further validation, this method may prove valuable for studying the dynamics of the stress response for a wide range of researchers from environmental science to medicine.

You've just had a sneak peek of the November 2015 issue of JoVE. Visit the website to see the full-length articles, plus many more, in JoVE: The Journal of Visualized Experiments.

Video Link

The video component of this article can be found at https://www.jove.com/video/5758/

Protocol

A Structured Rehabilitation Protocol for Improved Multifunctional Prosthetic Control: A Case Study

Aidan Dominic Roche^{1,2}, Ivan Vujaklija^{3,4}, Sebastian Amsüss^{3,4}, Agnes Sturma^{1,5}, Peter Göbel⁶, Dario Farina^{3,4}, Oskar C. Aszmann^{1,2}

¹Christian Doppler Laboratory for Restoration of Extremity Function, ²Department of Surgery, Division of Plastic and Reconstructive Surgery, **Medical University of Vienna**, ³Department of Neurorehabilitation Engineering, **Bernstein Focus Neurotechnology Göttingen**, ⁴University Medical Center Göttingen, **Georg-August University**, ⁵University of Applied Sciences FH Campus Wien, ⁶Research & Development, **Otto Bock Healthcare Products GmbH**

JOVE Journal of Visualized Experiments

As prosthetic development moves towards the goal of natural control, harnessing amputees' inherent ability to learn new motor skills may enable proficiency. This manuscript describes a structured rehabilitation protocol, which includes imitation, repetition, and reinforcement learning strategies, for improved multifunctional prosthetic control.

Conditions Affecting Social Space in Drosophila melanogaster

Alison R. McNeil¹, Sam N. Jolley¹, Adesanya A. Akinleye², Marat Nurilov², Zulekha Rouzyi², Austin J. Milunovich³, Moria C. Chambers³, Anne F. Simon¹

¹Department of Biology, **University of Western Ontario**, ²Department of Biology, **York College/CUNY**, ³Department of Entomology, **Cornell University**

The effect of genes and environment on social space of *Drosophila melanogaster* can be quantified through a powerful but straightforward analytical paradigm. We show here different factors that can affect this social space, and thus need to be taken into consideration when designing experiments in this paradigm.

Thermal Imaging to Study Stress Non-invasively in Unrestrained Birds

Paul Jerem, Katherine Herborn, Dominic McCafferty, Dorothy McKeegan, Ruedi Nager

Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow

There is a need for a non-invasive assessment of stress. This paper describes a simple protocol using thermal imaging to detect a significant response in eye-region temperature in wild blue tits to a mild acute stressor.

Disclosures

No conflicts of interest declared.