Materials List for:

Generation of Alginate Microspheres for Biomedical Applications

Omaditya Khanna¹, Jeffery C. Larson², Monica L. Moya³, Emmanuel C. Opara⁴, Eric M. Brey²,⁵

¹Department of Chemical and Biological Engineering, Illinois Institute of Technology
²Department of Biomedical Engineering, Illinois Institute of Technology
³Department of Biomedical Engineering, University of California at Irvine
⁴Wake Forest Institute for Regenerative Medicine and Department of Biomedical Engineering, Wake Forest University Health Sciences
⁵Research Service, Hines Veterans Administration Hospital

Correspondence to: Eric M. Brey at brey@iit.edu

URL: http://www.jove.com/video/3388
DOI: doi:10.3791/3388

Materials

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Catalog Number</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pronova Ultrapure LVG alginate</td>
<td>Nova-Matrix</td>
<td>4200006</td>
<td>A variety of alginate formulations are available. The choice of alginate influences the end properties of the microbeads, including size, mechanical properties, and transport. The composition used should be optimized for a given application.</td>
</tr>
<tr>
<td>Pronova Ultrapure LVM alginate</td>
<td>Nova-Matrix</td>
<td>4200206</td>
<td>A variety of alginate formulations are available. The choice of alginate influences the end properties of the microbeads, including size, mechanical properties, and transport. The composition used should be optimized for a given application.</td>
</tr>
<tr>
<td>Poly-L-ornithine hydrochloride</td>
<td>Sigma-Aldrich</td>
<td>P2533</td>
<td></td>
</tr>
</tbody>
</table>