Materials List for:
A Test Bed to Examine Helmet Fit and Retention and Biomechanical Measures of Head and Neck Injury in Simulated Impact

Henry Y. Yu¹, Brooklynn M. Knowles¹, Christopher R. Dennison¹

¹Department of Mechanical Engineering, University of Alberta

Correspondence to: Christopher R. Dennison at cdenniso@ualberta.ca

URL: https://www.jove.com/video/56288
DOI: doi:10.3791/56288

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Catalog Number</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid III Headform</td>
<td>Humanetics or Jasti-Utama</td>
<td>N/A</td>
<td>50th Percentile ATD, for impact simulation</td>
</tr>
<tr>
<td>Hybrid III Neck</td>
<td>Humanetics or Jasti-Utama</td>
<td>N/A</td>
<td>50th Percentile ATD, for impact simulation</td>
</tr>
<tr>
<td>Linear Accelerometers</td>
<td>Measurement Specialties</td>
<td>64C-2000-360</td>
<td>for head acceleration measurement</td>
</tr>
<tr>
<td>Upper Neck Load Cell</td>
<td>mg Sensor</td>
<td>N6ALB11A</td>
<td>for neck load measurement</td>
</tr>
<tr>
<td>High Speed Camera</td>
<td>Vision Research</td>
<td>v611</td>
<td>for motion capture</td>
</tr>
<tr>
<td>Camera Lens</td>
<td>Carl Zeiss</td>
<td>N/A</td>
<td>50 mm f/1.4, for motion capture</td>
</tr>
<tr>
<td>Camera Lens</td>
<td>Carl Zeiss</td>
<td>N/A</td>
<td>100 mm f/2.0, for motion capture</td>
</tr>
<tr>
<td>Bicycle Helmet</td>
<td>Bell</td>
<td>N/A</td>
<td>Traverse</td>
</tr>
<tr>
<td>Data Acquisition System</td>
<td>National Instruments</td>
<td>PXI 6251</td>
<td>for Hybrid III signal acquisition</td>
</tr>
<tr>
<td>Head Impact Drop Tower</td>
<td>University of Alberta</td>
<td>N/A</td>
<td>Custom-designed, for impact simulation</td>
</tr>
<tr>
<td>Optical Interrogator</td>
<td>Smart Fibres Ltd.</td>
<td>N/A</td>
<td>SmartScan, for optical sensor force measurement</td>
</tr>
<tr>
<td>Fit Force Sensor</td>
<td>University of Alberta</td>
<td>N/A</td>
<td>Custom-designed, for measuring helmet fit forces</td>
</tr>
</tbody>
</table>