International Expert Consensus and Recommendations for Neonatal Pneumothorax Ultrasound Diagnosis and Ultrasound-guided Thoracentesis Procedure

Jing Liu1,2, Dalibor Kurepa3, Francesco Feletti4,5, Almudena Alonso-Ojembarrena6, Jovan Lovrenski7, Roberto Copetti8, Erich Sorantin9, Javier Rodriguez-Fanjul10, Karishma Katti11, Andrea Aliverti12, Huayan Zhang11,12, Misun Hwang13, Tsu F. Yeh14, Cai-Bao Hu15, Xing Feng16, Ru-Xin Qiu1,2, Jing-Han Chi17, Li-Li Shang16, Guo-Rong Lyn19, Shao-Zheng He20, Yan-Fen Chai21, Zhan-Jun Qiu22, Hai-Ying Cao2,23, Yue-Qiao Gao1,2, Xiao-Ling Ren1,2, Guo Guo1,24, Li Zhang1,2, Ying Liu1,2, Wei Fu1,2, Zu-Lin Lu1,2, Hong-Lei Li1,2

1Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital
2The National Neonatal Lung Ultrasound Training Base
3Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center
4Department of Electronics, Information and Bioengineering, Politecnico di Milano
5Istituto di Diagnostica per Immagini, Ausl della Romagna, S. Maria delle Croci Hospital
6Neonatal Intensive Care Unit, Puerta del Mar University Hospital
7Faculty of Medicine, University of Novi Sad, Serbia, Institute for Children and Adolescents Health Care of Vojvodina
8Emergency Department, University Hospital of Cattinara
9Division of Pediatric Radiology, Department of Radiology, Medical University Graz
10Pediatric Intensive Care Unit, Pediatric Service Hospital Joan XXIII Tarragona, University Rovira i Virgil
11Center for Newborn Care, Guangzhou Women and Children's Medical Center
12Division of Neonatology, Children's Hospital of Philadelphia
13Section of Neonatal Imaging, Department of Radiology, Children's Hospital of Philadelphia
14Maternal Child Health Research Institute, Taipei Medical University and China Medical University
15Intensive Care Unit, Zhejiang Hospital
16Department of Neonatology, Children's Hospital of Soochow University
17Department of Neonatology and NICU, Bayi Children's Hospital Affiliated to the Seventh Medical Center of Chinese PLA General Hospital
18Intensive Care Unit, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine
19Collaborative Innovation Center for Maternal and Infant Health Service Application Technology, Quanzhou Medical College
20Department of Ultrasound, Second Affiliated Hospital of Fujian Medical University
21Department of Emergency Medicine, Tianjin Medical University General Hospital
22Department of Emergency and Critical Care Medicine, Affiliated Hospital of Traditional Chinese Medicine
23Department of Ultrasound, GE Healthcare
24The Neonatal Intensive Care Unit, Fifth Medical Center of Chinese PLA General Hospital

Correspondence to: Jing Liu at liujingbj@live.cn

URL: https://www.jove.com/video/60836
DOI: doi:10.3791/60836

Keywords: Medicine, Issue 157, pneumothorax, newborn, infant, lung ultrasound, diagnosis, thoracentesis

Date Published: 3/12/2020


Abstract

Pneumothorax (PTX) represents accumulation of the air in the pleural space. A large or tension pneumothorax can collapse the lung and cause hemodynamic compromise, a life-threatening disorder. Traditionally, neonatal pneumothorax diagnosis has been based on clinical images, auscultation, transillumination, and chest X-ray findings. This approach may potentially lead to a delay in both diagnosis and treatment. The use of lung US in diagnosis of PTX together with US-guided thoracentesis results in earlier and more precise management. The recommendations presented in this publication are aimed at improving the application of lung US in guiding neonatal PTX diagnosis and management.

Video Link

The video component of this article can be found at https://www.jove.com/video/60836/
Introduction

Pneumothorax (PTX) is defined as the presence of air within the pleural space. It is a well-recognized medical emergency condition with high mortality rates, especially in neonates with associated risk factors\textsuperscript{1,2,3}. The incidence of PTX is reported to be 1–2% in term infants and 6% in premature infants with respiratory distress\textsuperscript{2,3}. In addition, lung US (LUS) performed on asymptomatic term infants show that the incidence of mild PTX in these patients can be as high as 10%\textsuperscript{4,5}. Risk factors associated with increased incidence of PTX include meconium aspiration syndrome (MAS), respiratory distress syndrome (RDS), and persistent pulmonary hypertension of the newborn (PPHN)\textsuperscript{5,6,7}. A 1 min Apgar score ≤ 7 was associated with a 2.67x increased risk of PTX (95% CI 1.14–6.25)\textsuperscript{8}. Increasing peak inspiratory pressure (PIP) during conventional mechanical ventilation has been shown to be a risk factor for PTX, and a PIP increase of 1 cm H\textsubscript{2}O increases the odds of PTX by 1.46 (95% CI 1.02–2.07)\textsuperscript{9}. The incidence of PTX in infants with a <2,500 g birth weight (BW) increases almost 10x compared to those with a BW ≥ 2500 g\textsuperscript{10}. Notably, PTX is associated with increased mortality, with an odds ratio of 5.27 (95% CI = 1.96–14.17)\textsuperscript{11}. Apiliogullari et al. reported that aggregate mortality was as high as 30% in PTX patients while survivors also had an increased rate of bronchopulmonary dysplasia (4.28x vs. controls)\textsuperscript{12}. Therefore, early and accurate diagnosis followed by adequate treatment is imperative\textsuperscript{3,4,5,6,7,8,9,10,11,12,13,14}. Lately, less expensive US imaging systems have become readily available, and non-ionizing, fast, and repeatable LUS represents an ideal tool for the diagnosis of neonatal PTX.

PTX is traditionally diagnosed by clinical imaging, auscultation, transillumination, and chest X-ray findings. In some cases of non-tension PTX, watchful waiting is warranted. However, large PTX or tension PTX requires prompt evacuation of the air in the pleural space by thoracocentesis. Obtaining a chest X-ray image can be time-consumming and prolong the diagnosis of tension PTX. For these reasons, in many neonatal intensive care units (NICUs), LUS is replacing chest X-rays in diagnosing PTX due to its superior sensitivity and specificity\textsuperscript{15,17}. Moreover, LUS has been shown to be more accurate than chest X-rays even for small, non-tension PTX\textsuperscript{18,19,20,21,22,23,24,25,26,27}. LUS signs of PTX were first studied and described in adult critical patients. Patients with suspected PTX were scanned with LUS and computed tomography (CT). CT signs characteristic of PTX were abolition of lung sliding in the B-mode (corresponding to the stratosphere sign in the M-mode), presence of A-lines, and the lung point. In the same study, abolition of lung sliding alone has a specificity of 100% and a sensitivity of 78% for PTX. Absent lung sliding together with the presence of A-lines had a sensitivity of 95% and a specificity of 94% while lung point alone had sensitivity of 79% and a specificity of 100%\textsuperscript{18,19}.

Similarly, the usefulness of LUS to diagnose PTX has been described in infants\textsuperscript{19,20,21,22,23,24}. CT could not be used as the benchmark in neonatal patients, thus LUS was used with chest X-ray and clinical exam findings. Most of the studies included infants with sudden deterioration of their respiratory status, where LUS was performed before or after chest X-ray. The diagnostic accuracy showed a sensitivity of 100%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 100%\textsuperscript{16,17,18,19}. In cases characterized by large PTX, lung point was absent, which consequently decreased the sensitivity of this sign to 75–95%\textsuperscript{15,19,20}. The average time to perform the diagnostic tests in these studies was 5.3 ± 5.6 min for LUS versus 19 ± 11.7 min for a chest X-ray\textsuperscript{19}. As expected, LUS showed better diagnostic accuracy than chest transillumination\textsuperscript{19}. Keeping in mind that in infants with tension PTX the needle is blindly placed in the second intercostal space at the midclavicular line, it is not surprising to see treatment failure and/or complications\textsuperscript{3}. On the other hand, PTX thoracentesis performed under LUS guidance has shown promising results in infants\textsuperscript{25,26,27}.

The neonatal Lung Ultrasound Training Base of China, Chinese College of Critical Ultrasound, as well as the World Interactive Network Focused On Critical Ultrasound China branch have organized this international expert panel that reviewed the latest literature related to neonatal PTX diagnosis and treatment aimed at the improvement in the application of LUS-based diagnosis and treatment of PTX. 

Patients and timing of the examination

The LUS exam can be used on any neonate in respiratory distress. It is indicated in the following situations: 1) Suspicion of PTX in neonates with sudden deterioration of respiratory status; 2) Before and after thoracocentesis.

Lung ultrasonography terminology used in PTX diagnosis

Frequently used ultrasound terms in diagnosis of PTX include: A-line, B-line, confluent B-lines, compact B-lines, alveolar-interstitial syndrome, pleural line, lung sliding, lung pulse, sandy beach sign, and stratosphere sign. The exact definitions of the terms used have been described in detail previously\textsuperscript{28,31,32,33,34}.

Protocol

This work was approved by the Research Ethics Committee of Beijing Chaoyang District Maternal and Child Healthcare Hospital & Beijing Chaoyang District Bureau of Science, Technology and Information. The study protocol follows the guidelines of the hospital’s human research ethics committee.

1. Ultrasound Exam Preparation

1. Probe selection
   1. Select a high-frequency linear probe (≥10.0 MHz) to scan the lungs.

2. Probe disinfection
   1. Sterilize the transducer before and after each examination.

3. Preset selection
   1. Select the LUS preset.
   2. Optimize imaging settings for examination when no LUS preset is available.
      1. Select one of the Small Parts presets.
      2. Adjust depth to 4–5 cm using the Depth button.
3. Adjust the **Focus Zone** button to have 1 or 2 focuses.
4. Adjust the focus close to the pleural line.
5. Turn on the **SRI** (Speckle Reduction Imaging) by clicking the button and selecting a level of 2–3 to reduce the speckle noise.
6. Turn on the **CRI button** (Crossbeam) and select a level of 2 to improve the contrast resolution.
7. Select **Fundamental Imaging** for sharper A-lines or B-lines.

4. Using an ultrasound gel
   1. Apply the appropriate volume of warm gel on the transducer to keep it in good contact with the skin surface.

2. **Place the Infant in a Suitable Position**
   1. Keep the infant quiet. Use a pacifier when necessary.
   2. Keep the infant in a supine, prone, or side position for examination.

3. **Partitioning the Lungs**
   1. Six regions: Divide each side of the lung into three regions along the anterior axillary and posterior axillary line. These are the anterior, lateral, and posterior areas. Thus, both lungs are divided into six regions.
   2. Twelve regions: Divide each lung into upper and lower lung fields by the nipple connection line. Now there should be 12 regions on both lungs.

4. **Procedure for LUS Imaging**
   1. **B-mode scanning**
      1. Press the **2D button** or B key to start B-mode scanning.
      2. Place the transducer perpendicular to the ribs to start perpendicular scanning. Identify the presence of the pleural line, A-line, and B-lines.
      3. On real-time US observe whether there is lung sliding or lung point.
      4. Rotate the probe 90° to start parallel scanning.
         NOTE: 1) The exam must cover the entire bilateral lung fields. Start at the highest part of the thorax, especially in emergency situations. Because newborns are usually placed in a supine position, this zone is usually located on both sides of the sternum; 2) Bilateral perpendicular scanning is the most important scanning method, while parallel scanning is helpful for diagnosing mild-to-moderate PTX.
   2. **M-mode scanning**
      1. Press the **M-button** to start M-mode scanning. Look for the presence of the stratosphere sign or lung point that indicate PTX.
         NOTE: Experienced sonographers can detect PTX using only B-mode. M-mode scanning can be used to confirm the B-mode findings if an examiner is less experienced.

5. **Identifying the Presence of PTX**
   1. Observe if the pleural line, A-lines, and B-lines exist on B-mode.
   2. Observe if lung sliding and lung point exist on real-time US.
   3. Observe if the stratosphere sign is present on M-mode.

6. **Identifying the Degree of PTX**
   1. Identify the degree of PTX according to the LUS findings.

7. **LUS-guided Thoracentesis**
   1. Identify a suitable puncture point.
      NOTE: When identifying a suitable puncture point, keep the following in mind: 1) Intercostal space where the pleural line and A-lines exist on B-mode; 2) Intercostal space that presents with a stratosphere sign in M-mode; 3) Intercostal space where lung sliding disappears on real-time US.
   2. Select an appropriate puncture needle (18-20 G needle or an angiocatheter connected to a 20 mL syringe and a three-way stopcock).
   3. Body positioning
      1. Keep the infant in a quiet state. Assure adequate pain control according to the local unit policy.
      2. Place the infant in the supine, prone, or side position before thoracentesis, allowing the air on the affected side to rise.
      3. Put on a pair of sterile gloves. Disinfect the puncture area.
   4. Thoracentesis
      1. Keep the infant in a stable position.
      2. Evacuate the pleural air by needle aspiration at the selected puncture point. Alternatively, a chest tube may be placed immediately.
NOTE: In general, thoracentesis achieves good results. Adequate pain control is strongly recommended (a local 1% lidocaine injection in the dose of 0.5–1.0 mg/kg or enteral pain control as per unit policy). The use of a pacifier is also encouraged. Larger or tension-PTX is at increased risk of having an underlying bronchopulmonary fistula. It may need a prolonged period of continuous chest tube drainage. Postprocedural LUS evaluation of the affected side is recommended. Cover the insertion site with petroleum gauze once thoracentesis is completed.

Representative Results

The main purpose of these guidelines is to direct users on how to perform US-guided thoracentesis to treat PTX. Neonatal normal lung appears as a bamboo sign on B-mode US (Figure 1A) and as a seashore sign (Figure 1B) on M-mode US. Lung sliding is clearly evident under real-time US (see Video 1 for lung sliding)\(^{31,32,33,34}\).

PTX is diagnosed based on the following LUS imaging characteristics: 1) Disappearance of lung sliding. This is the most important sign in the US diagnosis of PTX; 2) Absence of B-lines; 3) Presence of the pleural line and A-lines; 4) On M-mode imaging a normal sandy beach sign is replaced by the stratosphere sign, which is highly specific for PTX; 5) Presence of the lung point in mild to moderate PTX. This sign may not be evident if PTX is large\(^{30,31,32,33,34}\). The PTX diagnostic flowchart is presented in Figure 2\(^{34}\).

Identifying the degree of PTX
The severity of PTX can be identified by the several characteristics. 1) Mild PTX: LUS signs of PTX exist in the anterior chest areas only when an infant is in a supine position. The area where lung sliding disappears is approximately <50% of the whole lung field or the spared areas exist. Lung point is easily identifiable due to the normally expanded lung. The presence of a spared area generally suggests mild PTX; 2) Moderate PTX: LUS signs of PTX are evident in the anterior and lateral chest areas when the infant is in a supine position. The area where lung sliding disappears is >50% of the whole lung field. Identifying the transitional lung point area may be challenging; 3) Severe PTX: LUS signs of PTX exist in the anterior, lateral, and posterior lung areas. Lung sliding is absent in all lung areas. There is no identifiable lung point.

Thoracentesis under lung US guidance
The infant can be placed in the supine, prone, or side position. Slight elevation of the upper body helps obtain more complete air evacuation. If severe PTX is present, the thoracentesis must be performed immediately (Figure 3, Video 2). Place the patient in a prone position (Figure 4A), side position (Figure 4B), or supine position. In the case of tension PTX, continuous air drainage with a chest tube can be used with the infant in a supine position (Figure 4C). In moderate PTX, if thoracentesis is indicated, the site of needle insertion can be anywhere in the field where lung sliding is absent (Figure 5, Video 3). Mild PTX (Figure 6, Figure 7, Video 4, Video 5, Video 6) generally does not require thoracentesis. However, if the primary pulmonary disease of the infant is more severe and the infant presents with clinical deterioration, then thoracentesis may be indicated (Figure 8, Video 7).

Figure 1: Neonatal Normal LUS. (A) B-mode US: Pleural line and A-lines are smooth, regular, and straight hyperechoic lines, parallel and equidistant from each other. A-lines gradually diminish and finally disappear off the screen. (B) M-mode US: Above the pleural line are linear hyperechoic lines that correspond to the non-moving skin, and subcutaneous and muscle tissue. Below the pleural line is the normal lung tissue that moves with each respiration, leaving a grainy image. These M-mode findings create a seashore sign. Please click here to view a larger version of this figure.
Figure 2: The PTX diagnostic flowchart program. This flowchart program shows that B-mode US is the most important method to diagnose PTX, while M-mode US is helpful to confirm the diagnosis. This figure is reproduced from Liu et al.\textsuperscript{34}. Please click here to view a larger version of this figure.

Figure 3: Severe PTX. B-mode US (upper part): The pleural line and the A-lines are present, apparently normal LUS. M-mode US (lower part) shows a stratosphere sign as the lung below the pleural line is displaced by PTX. The absence of lung movement under the pleural line cancels out the normal grainy image. Please click here to view a larger version of this figure.

Figure 4: Body position. (A) Infant in prone position. (B) Infant in side position. An angiocatheter is used to evacuate the air from the pleural location. It is connected to a 20 mL syringe. (C) Chest tube under continuous suction. Please click here to view a larger version of this figure.
Figure 5: Lung point in moderate PTX. B-mode US: Lung point with an area of disappeared lung sliding that is >50% of the whole field, suggesting moderate PTX. Evacuation of air is usually needed with this degree of PTX. The needle puncture site can be selected anywhere in the lung field without lung sliding. Please click here to view a larger version of this figure.

Figure 6: Lung point in mild PTX. B-mode US: Lung point with an area of disappeared lung sliding that is <50% of the whole lung field suggests moderate PTX. Evacuation of air is rarely needed with this degree of PTX. Please click here to view a larger version of this figure.
Figure 7: Spared area in mild PTX. The pleural line and A-lines exist in the middle field of the lung while the significant B-lines exist in the upper and lower field of the lung. This kind of lung US sign in known as a spared area. You can find two lung points in this condition. The presence of a spared area generally suggests mild PTX (please also see Video 6). Air evacuation is usually not needed with this degree of PTX. Please click here to view a larger version of this figure.

Figure 8: Spared area in mild PTX. A male patient with a gestational age of 41 weeks and birth weight of 3,200 g. The patient was admitted to the NICU because of dyspnea 20 min after birth. LUS showed that spared areas existed in the left anterior chest only. B-mode LUS (Figure 8) and real-time US (Video 7) suggest the presence of mild PTX in the left chest together with pneumonia. Although the infant had only mild PTX, it was accompanied by severe dyspnea not alleviated with mechanical ventilation. Thus, the pleural puncture was performed. The infant's status significantly improved upon drainage of 15 mL of air from the left chest. Please click here to view a larger version of this figure.
The authors have nothing to disclose.
Acknowledgments

We acknowledge all the experts and authors that participated in writing and editing the manuscript.

This work was supported by the Social Development Projects, Beijing Chaoyang District Bureau of Science, Technology and Information (CYSF1922 & CYSF1820) and the Clinical Research Special Fund of Wu Jieping Medical Foundation (320.6750.15072 & 320.6750.16092).

We acknowledge the Neonatal Lung Ultrasound Training Base of China, Chinese College of Critical Ultrasound, as well as World Interactive Network Focused On Critical Ultrasound China branch for organizing this work.

We acknowledge the all the staff that worked for the Department of Neonatology and the NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, especially the nursing staff who assisted this work, particularly during the process of the video recording.

References


