Cartographie quantitative de la souche d'un anévrisme aortique abdominal

Biomedical Engineering

Your institution must subscribe to JoVE's Engineering collection to access this content.

Fill out the form below to receive a free trial or learn more about access:

 

Overview

Source: Hannah L. Cebull1, Arvin H. Soepriatna1, John J. Boyle2 et Craig J. Goergen1

1 Fois Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana

2 (en) Génie mécanique et science des matériaux, Université de Washington à St. Louis, St Louis, Missouri

Le comportement mécanique des tissus mous, tels que les vaisseaux sanguins, la peau, les tendons et d'autres organes, sont fortement influencés par leur composition d'élastine et de collagène, qui fournissent élasticité et force. L'orientation des fibres de ces protéines dépend du type de tissu mou et peut aller d'une seule direction préférée à des réseaux maillés complexes, qui peuvent devenir altérés dans les tissus malades. Par conséquent, les tissus mous se comportent souvent anisotropically au niveau cellulaire et d'organe, créant un besoin pour la caractérisation tridimensionnelle. Il est important de développer une méthode d'estimation fiable des champs de souches dans des tissus ou des structures biologiques complexes pour caractériser et comprendre mécaniquement la maladie. La souche représente la façon dont les tissus mous se déforment relativement au fil du temps, et il peut être décrit mathématiquement à travers diverses estimations.

L'acquisition de données d'image au fil du temps permet d'estimer la déformation et la tension. Cependant, toutes les modalités d'imagerie médicale contiennent une certaine quantité de bruit, ce qui augmente la difficulté d'estimer avec précision la souche in vivo. La technique décrite ici permet de surmonter ces problèmes avec succès en utilisant une méthode d'estimation de déformation directe (DDE) pour calculer spatialement différents champs de souches 3D à partir de données d'image volumétriques.

Les méthodes actuelles d'estimation des souches comprennent la corrélation d'image numérique (DIC) et la corrélation numérique du volume. Malheureusement, DIC ne peut estimer avec précision la souche d'un avion 2D, limitant gravement l'application de cette méthode. Bien qu'utiles, les méthodes 2D telles que le DIC ont de la difficulté à quantifier la souche dans les régions qui subissent une déformation 3D. C'est parce que le mouvement hors plan crée des erreurs de déformation. La corrélation numérique du volume est une méthode plus applicable qui divise les données de volume initiale en régions et trouve la région la plus similaire du volume déformé, réduisant ainsi l'erreur hors plan. Cependant, cette méthode s'avère sensible au bruit et nécessite des hypothèses sur les propriétés mécaniques du matériau.

La technique démontrée ici élimine ces problèmes en utilisant une méthode DDE, ce qui la rend très utile dans l'analyse des données d'imagerie médicale. En outre, il est robuste à souche élevée ou localisée. Ici, nous décrivons l'acquisition de données d'échographie 4D fermées et volumétriques, sa conversion en format analysable, et l'utilisation d'un code Matlab personnalisé pour estimer la déformation 3D et les souches green-Lagrange correspondantes, un paramètre qui décrit mieux les grandes déformations. Le tenseur de souche Green-Lagrange est mis en œuvre dans de nombreuses méthodes d'estimation des souches 3D, car il permet de calculer F à partir d'un Least Squares Fit (LSF) des déplacements. L'équation ci-dessous représente le tenseur de souche Green-Lagrange, E, où F et moi représentons respectivement le gradient de déformation et le tenseur d'identité de deuxième ordre.

Equation 1(1)

Cite this Video

JoVE Science Education Database. Génie biomédical. Cartographie quantitative de la souche d'un anévrisme aortique abdominal. JoVE, Cambridge, MA, (2020).

Principles

L'échographie 4D est un volume dynamique qui est acquis à l'aide d'un moteur de traduction linéaire attaché à un transducteur d'ultrasons, permettant l'acquisition de boucles vidéo séquentielles cardiaques et respiratoires fermées dans une région d'intérêt. Cette méthode est utile pour visualiser des structures complexes telles que le cœur, où l'hypertrophie ou l'infarctus provoque des géométries uniques, ou des anévrismes aortiques, où l'expansion et la dissection asymétriques des vaisseaux se produisent souvent dans les vaisseaux tortueux. En outre, les données 4D peuvent fournir des informations spatiales et temporelles à haute résolution, ce qui est également important pour l'imagerie cardiovasculaire.

La méthode DDE appliquée aux données d'échographie 4D est supérieure à d'autres méthodes parce qu'elle utilise l'enregistrement d'image non rigide. Les tenseurs de gradient de déformation sont traditionnellement estimés à partir des champs de déplacement suivant la corrélation numérique du volume. En revanche, la méthode DDE estime intrinsèquement les tenseurs de gradient de déformation lors de l'enregistrement du volume en optimisant une fonction de déformation soigneusement choisie pour être directement analogue au tenseur de déformation. La fonction de déformation dépend à la fois de la position spatiale et du paramètre de déformation (p):

Equation 2(2)

Les trois premiers éléments de cette fonction représentent le tenseur de gradient de déformation, F, permettant de intégrer directement le calcul de la déformation dans la fonction de déformation. Cette méthode de déformation a été prouvée pour augmenter la précision et la précision de l'estimation de la souche par rapport à des techniques précédentes similaires, car elle permet des déformations grandes ou localisées couramment trouvés dans les tissus mous.

Procedure

1. Set-up d'ultrason4D

  1. Lorsque vous utilisez le logiciel d'imagerie, utilisez un ordinateur portable capable d'exécuter un logiciel informatique mathématique pour automatiser le processus d'acquisition 4D. Connectez l'ordinateur portable avec ce code personnalisé au système d'échographie via le port USB. Notez que le logiciel d'imagerie a une fonction d'échographie 4D intégrée dans le logiciel.
  2. Après avoir allumé le système d'échographie, configurez l'unité de surveillance physiologique tout en veillant à ce que la fréquence cardiaque et les boutons de température soient allumés. Initialisez l'étage moteur 3D attaché au support du transducteur.
  3. Utilisez le transducteur d'étape et d'ultrason approprié pour l'acquisition d'images. Assurez-vous que toutes les connexions appropriées sont faites.
  4. Procéder à l'anesthésie et la préparation de l'animal pour l'imagerie. Ajoutez l'onuleur ophtalmique aux yeux pour empêcher la dessiccation cornéenne, fixez les pattes aux électrodes de scène, et insérez une sonde de température rectale lubrifiée. Retirer la fourrure dans la zone d'intérêt à l'aide d'une crème dépilatoire.
  5. Assurez-vous que la crème dépilatoire est terminée. Ensuite, appliquez une quantité généreuse du gel transduisant ultrasonique réchauffé à l'animal. Ceci est particulièrement important pour créer une bonne connexion sur toute la région d'intérêt pour l'imagerie 4D.

2. Acquisition d'ultrasons 4D

  1. Commencez une nouvelle étude sur le système d'échographie et ouvrez la fenêtre d'imagerie en mode B (mode luminosité). Abaissez le transducteur sur l'animal et localisez la région d'intérêt à l'aide des boutons x et y-axe sur la scène, en s'assurant que la fréquence respiratoire ne diminue pas considérablement. Surveillez cela en bas de l'écran.
  2. Placez le transducteur au milieu de la région d'intérêt. À partir de là, approximatif de la distance nécessaire pour que le transducteur se déplace de haut en bas de sorte que toute la région d'intérêt est incluse.
  3. Entrez les dimensions approximatives dans le code logiciel informatique, y compris une taille d'étape qui est généralement de 0,08 mm pour l'imagerie aurifysm aortique abdominale. Commencez à exécuter le code après s'assurer que les fréquences cardiaques et respiratoires de l'animal sont stables. Ceci est important pour réduire les erreurs lors de la reconstruction d'images.
  4. Après avoir terminé l'acquisition d'image, exportez les données sous forme de fichiers XML bruts.

3. Conversion de données d'ultrason 4D

  1. Entrez les fichiers XML bruts dans un logiciel qui peut convertir les données dans le format approprié pour l'analyse des taches 3D. Ici, nous utilisons Matlab pour convertir les fichiers XML en fichiers MAT. Le script Matlab complet est disponible ici.
  2. Pour une conversion appropriée, le nombre d'images, la taille de l'étape et la résolution de sortie souhaitée devront également être saisis.
  3. Après avoir rééchantillonné la matrice par avion, importer le nouveau fichier MAT dans le code d'analyse des souches 3D.

4. Analyse 3D du code de contrainte

  1. Commencez l'analyse en ajustant correctement le fichier MAT importé. Par exemple, le volume d'image peut devoir être redimensionné pour réduire le temps de calcul.
  2. Entrez la région à analyser et déterminez le modèle de maillage approprié pour segmenter les données d'image sous forme de boîtes simples ou de polygones choisis manuellement. La taille de la boîte des régions et l'espacement entre les points du centre peuvent devoir être modifiés pour chaque jeu de données. Les nombres optimaux choisis pour la taille de la boîte seront autour de l'ordre des pixels de la fonctionnalité en cours de suivi, qui peut être approximative en regardant le nombre de pixels en deux dimensions dans une tranche. L'espacement des boîtes déterminera la résolution des champs de contrainte. Plus de boîtes augmenteront la résolution mais peuvent également augmenter considérablement le temps de calcul.
  3. Commencez à calculer les Jacobiens et les gradients itérativement dans chacune de ces régions. Une fois la précomputation terminée, appliquez la fonction de déformation.
  4. Calculer le tenseur de gradient de déformation. Calculez d'abord la souche, puis calculez les eigenvalues et les eigenvectors à l'aide de la méthode d'estimation de la déformation directe.
  5. Tracez ces résultats dans les plans désirés en utilisant une technique telle que la cartographie des couleurs d'un plan coupé pour représenter le champ de tension au-dessus de votre région d'intérêt.

L'imagerie de contrainte tridimensionnelle est employée pour estimer la déformation des tissus mous au fil du temps et pour comprendre la maladie. Le comportement mécanique des tissus mous, tels que la peau, les vaisseaux sanguins, les tendons, et d'autres organes, est fortement influencé par leur composition extracellulaire, qui peut devenir altérée par le vieillissement et la maladie. Dans les tissus biologiques complexes, il est important de caractériser ces changements, qui peuvent affecter de manière significative les propriétés mécaniques et fonctionnelles d'un organe.

La cartographie quantitative des souches utilise des données d'image volumétrique s'agit de données d'image volumétriques et d'une méthode d'estimation directe de la déformation pour calculer les champs de souches tridimensionnelles à variation spatiale variable. Cette vidéo illustrera les principes de la cartographie des souches, démontrera comment la cartographie quantitative des souches est utilisée pour estimer les champs de souches dans des tissus biologiques complexes et discutera d'autres applications.

Les tissus biologiques sont fortement influencés par la composition et l'orientation de l'élastine et du collagène. L'élastine protéique est un composant très élastique des tissus qui s'étirent et se contractent continuellement, comme les vaisseaux sanguins et les poumons. Le collagène est la protéine la plus abondante dans le corps, et est assemblé à partir de polymères triple-héliques individuels qui sont regroupés en fibres plus grandes qui fournissent l'intégrité structurelle aux tissus allant de la peau aux os.

L'orientation de ces protéines va des fibres alignées aux réseaux de maillage fibreux, ce qui affecte les propriétés mécaniques du tissu. La souche est une mesure de la déformation relative des tissus mous au fil du temps, et peut être utilisée pour visualiser les blessures et les maladies. Il est décrit et cartographié à l'aide d'estimations mathématiques.

Pour cartographier la tension dans les organes complexes, tels que le cœur, des données d'ultrason en quatre dimensions, qui fournissent des informations à haute résolution, spatiales et temporelles, peuvent être utilisées. Ensuite, la méthode d'estimation de déformation directe, ou DDE, est appliquée aux données. Un code est utilisé pour estimer la déformation 3D et les souches correspondantes de Green-Lagrange à l'aide de l'équation suivante.

Le tenseur de contrainte Green-Lagrange dépend du tenseur de gradient de déformation et du souautreur d'identité de deuxième ordre. Les tenseurs de gradient de déformation sont traditionnellement estimés à partir des champs de déplacement. Dans la méthode DDE, une fonction de déformation est optimisée pour être directement analogue au tenseur de déformation. La fonction de déformation dépend à la fois de la position spatiale et du paramètre de déformation. Le calcul de la déformation est directement incorporé dans la fonction de déformation. Les neuf premiers éléments représentent le tenseur de gradient de déformation.

Cette méthode est utilisée pour estimer les déformations grandes et localisées dans les tissus mous. Maintenant que nous comprenons les principes de la cartographie des souches, voyons maintenant comment la cartographie des souches est effectuée pour détecter les anévrismes aortiques chez la souris.

Pour commencer la configuration, ouvrez le logiciel Vivo 2100 et connectez l'ordinateur portable au système d'échographie. Assurez-vous que l'unité de surveillance physiologique est allumée pour mesurer la fréquence cardiaque et la température. Ensuite, initialisez l'étape moteur 3D.

Installez le transducteur d'ultrason et assurez-vous que toutes les connexions appropriées sont faites. Ensuite, anesthésiez l'animal qui sera photographié à l'aide de 3% d'isoflurane dans une chambre à abattre. Une fois que la souris est anesthésié, déplacez-la à l'étape chauffée et fixez un cône de nez pour livrer 1-2% isoflurane. Appliquez de l'onde ophtalmique sur les yeux et fixez les pattes aux électrodes de la scène pour surveiller la respiration et la fréquence cardiaque de l'animal. Ensuite, insérez une sonde de température rectale. Appliquer de la crème dépilatoire pour enlever les cheveux de la zone d'intérêt, puis appliquer une généreuse quantité de gel à ultrasons chaud à la zone déplée.

Pour commencer l'acquisition d'image, d'abord, ouvrez la fenêtre d'imagerie et sélectionnez le mode B. Puis abaissez le transducteur sur l'animal et utilisez les boutons x et y-axe sur la scène pour localiser la zone d'intérêt. Surveillez la fréquence respiratoire pour vous assurer qu'elle ne diminue pas considérablement. Placez le transducteur au milieu de la région d'intérêt. Approximatif ensuite de la distance requise pour couvrir toute la région d'intérêt.

Entrez ces dimensions dans le code MATLAB et choisissez une taille d'étape de 0,08 millimètre. Assurez-vous que le cœur et les fréquences respiratoires de l'animal sont stables, puis exécutez le code MATLAB.

Après l'acquisition d'images, exportez les données sous forme de fichiers XML bruts et convertissez-les en fichiers MAT. Assurez-vous d'entrer le nombre d'images, la taille de l'étape et la résolution de sortie. Puis rééchantillonner la matrice dans le plan à travers.

Importer le nouveau fichier MAT dans le code d'analyse des souches 3D. Il peut être nécessaire de redimensionner le fichier pour réduire le temps de calcul. Ensuite, entrez la région à analyser. Approximer le nombre de pixels dans une tranche bidimensionnelle de la fonction suivie et sélectionnez le modèle de maillage soit comme une simple boîte ou des polygones choisis manuellement. Choisissez le nombre de pixels optimal pour la taille du maillage. Calculez les Jacobiens et les gradients. Répéter l'opération pour chaque région. Ensuite, appliquez la fonction de déformation.

Ensuite, à l'aide de déformations cartésiennes calculées à partir de DDE, déterminez les eigenvalues et les eigenvectors de la déformation. Ensuite, sélectionnez les tranches pour lesquelles vous souhaitez tracer les valeurs de tension en faisant défiler l'axe long, l'axe de tri et les vues d'axe coronal.

Appuyez sur Sélectionnez Manifold pour l'analyse. Ensuite, utilisez le curseur pour placer des marqueurs le long de la paroi aortique, y compris le thrombus, l'anévrisme et les parties saines de l'aorte. Répétez pour toutes les vues. Enfin, utilisez la cartographie des couleurs pour tracer les résultats du champ de tension sur la région d'intérêt.

Examinons de près l'exemple d'un angiotensine II-induit ecindant aortique aortique aortique aurifère acquis à partir d'une souris. Tout d'abord, plusieurs boucles de visualisation kilohertz à axe court eCG sont obtenues à une taille d'étape donnée le long de l'aorte et combinées pour créer des données 4D.

Après avoir effectué le calcul de la souche 3D à l'aide d'une fonction de déformation optimisée, la parcelle de visualisation de la tranche 3D de l'aorte infrarénale est obtenue. La carte couleur de la souche verte principale est superposée pour mettre en évidence les régions de la souche hétérogène de la paroi aortique. De plus, de longues vues d'axe et d'axes courts révèlent des variations spatiales hétérogènes de la souche, en particulier lorsqu'un thrombus est présent.

Les parcelles de souches correspondantes montrent des valeurs de contrainte plus élevées dans les régions saines de l'aorte dans l'axe long, tandis que la région anévrismale montre une diminution de la tension dans l'axe court.

La visualisation quantitative précise de la souche à l'aide de l'estimation de déformation directe est un outil utile utilisé dans diverses applications biomédicales.

Par exemple, la tension cardiaque peut être quantifiée. Pendant le cycle cardiaque, le myocarde subit une déformation 3D. La quantification de la souche en trois dimensions fait partie intégrante de la caractérisation fiable de la dynamique de ce tissu au fil du temps. Ceci est utile dans le suivi de la progression de la maladie dans les modèles animaux.

Une autre application est dans la caractérisation du tissu intestinal. L'imagerie in vivo des intestins est difficile en raison des effets des structures environnantes. Cependant, le calcul de la souche à partir d'images de fibrose intestinale pourrait être particulièrement utile pour fournir une détection précoce des zones problématiques qui nécessitent une intervention chirurgicale.

À une échelle beaucoup plus petite, cette méthode DDE est également appliquée au niveau cellulaire en utilisant des techniques d'imagerie à plus haute résolution telles que la microscopie confocale. Il sert, par exemple, dans la caractérisation de la matrice extracellulaire pour comprendre comment les cellules communiquent sous les changements mécaniques.

Vous venez de regarder l'introduction de JoVE à la visualisation quantitative des souches. Vous devez maintenant comprendre comment mesurer la souche tridimensionnelle dans les tissus biologiques et comment cela est utilisé dans la détection précoce des maladies. Merci d'avoir regardé!

Results

Utilisant la procédure décrite ci-dessus, l'ultrason 4D d'une angiotensine II-induite aorcisme aortique aortique de dissection (AAA) d'une souris a été acquise. Plusieurs boucles vidéo EKV à axe court ont été acquises le long de l'aorte et combinées pour créer des données 4D, comme le montre la figure 1. Ces données ont ensuite été converties en fichier MAT à l'aide d'un code personnalisé, qui a ensuite été analysé dans un code de calcul de la souche 3D à l'aide d'une fonction de déformation. Après avoir optimisé les paramètres du code pour un jeu de données spécifique, une vue représentative à long axe avec les valeurs de contrainte correspondantes a été produite ainsi qu'une parcelle de visualisation de tranches 3D avec une carte de couleur de souche superposée (Figure 2). Cette technique DDE et les données de souche mettent en évidence les variations spatiales hétérogènes de la souche, en particulier lorsqu'un thrombus est présent. Ces résultats peuvent ensuite être corrélés avec la structure du vaisseau pour déterminer la relation entre la déformation in vivo et la composition de l'anévrisme.

Equation 3
Figure 1 : Les boucles de visualisation kilohertz (EKV) à la porte ECG sont acquises à partir d'emplacements de démarrage et de terminaison entrés manuellement, suivant une taille d'étape de 0,2 mm.

Figure 1
Figure 2 : Données d'échographie à haute fréquence 4D d'un anévrisme aortique abdominal disséquant murine représenté au systole (A) avec les principaux champs de tension estimés et superposés (B) (Scalebar - 5 mm). Vues à axe long et court représentant à la fois des régions anévrismes et des régions saines correspondant à la souche principale sur un cycle cardiaque (systole : t - 0,4) (C, D). Ces données montrent des niveaux de tension relativement élevés dans des régions saines et des valeurs de souche réduites dans l'anévrisme disséquant.

Applications and Summary

La caractérisation mécanique in vivo localisée est une partie importante de la compréhension de la croissance et du remodelage des tissus biologiques. Par rapport aux approches existantes, la procédure de quantification des souches décrite ici utilise une méthode améliorée de calcul précis de la souche 3D en déviant de façon optimale l'image non déformée avant la corrélation croisée. Cette méthode n'utilise aucune hypothèse matérielle pour déterminer les souches dans les volumes de tissus. Malheureusement, l'estimation de la souche n'est fiable que jusqu'à une taille de noyau de 15x15x15 voxels lors de l'utilisation des données d'ultrason, ce qui suggère que cette approche DDE peut ne pas détecter des caractéristiques subtiles dans un champ de tension. Malgré cette limitation, il demeure un outil important pour étudier les réponses mécaniques, diagnostiquer la pathologie et améliorer les modèles de maladies.

De nombreux domaines de recherche au-delà des anévrismes aortiques peuvent bénéficier de cet outil de mesure de la souche. La souche cardiaque peut également être facilement quantifiée à l'aide de cette méthode. Puisque le myocarde subit la déformation 3D pendant le cycle cardiaque, la tension de quantification dans trois dimensions fait partie intégrante de caractériser de manière fiable la dynamique de ce tissu. Des données fiables sur les souches sont particulièrement importantes pour suivre la progression de la maladie dans les modèles animaux.

L'analyse 3D de la souche peut également être appliquée à l'imagerie par ultrasons intestinaux. La caractérisation mécanique du tissu intestinal est le plus souvent effectuée in vitro. Cependant, ce n'est pas toujours une véritable représentation du comportement réel des intestins in vivo en raison des effets des structures environnantes. Comme exemple de traduire cliniquement cette approche, calculer la souche des images de la fibrose intestinale due à la pression luminale anormale pourrait fournir la détection tôt des secteurs problématiques qui exigent l'intervention chirurgicale.

Au-delà des applications à plus grande échelle, cette méthode peut également être appliquée au niveau cellulaire en utilisant des techniques d'imagerie à plus haute résolution, telles que la microscopie confocale. Caractériser la matrice extracellulaire est important pour comprendre comment les cellules communiquent. Beaucoup de recherches ont été menées sur la caractérisation biochimique, mais la compréhension de la façon dont la communication peut être menée par des réponses mécaniques exige une compréhension de la déformation et de la souche. La souche en vrac n'est pas bénéfique parce qu'il n'y a aucun moyen de déterminer l'origine du changement de déformation. L'application d'une approche DDE à haute résolution pourrait révéler directement comment la matrice extracellulaire réagit aux changements mécaniques.

Remerciements

Nous tenons à remercier John Boyle, Guy Genin et Stavros Thomopoulos pour la contribution du code Matlab personnalisé DDE capable d'estimer directement la souche Lagrange-Green.

1. Set-up d'ultrason4D

  1. Lorsque vous utilisez le logiciel d'imagerie, utilisez un ordinateur portable capable d'exécuter un logiciel informatique mathématique pour automatiser le processus d'acquisition 4D. Connectez l'ordinateur portable avec ce code personnalisé au système d'échographie via le port USB. Notez que le logiciel d'imagerie a une fonction d'échographie 4D intégrée dans le logiciel.
  2. Après avoir allumé le système d'échographie, configurez l'unité de surveillance physiologique tout en veillant à ce que la fréquence cardiaque et les boutons de température soient allumés. Initialisez l'étage moteur 3D attaché au support du transducteur.
  3. Utilisez le transducteur d'étape et d'ultrason approprié pour l'acquisition d'images. Assurez-vous que toutes les connexions appropriées sont faites.
  4. Procéder à l'anesthésie et la préparation de l'animal pour l'imagerie. Ajoutez l'onuleur ophtalmique aux yeux pour empêcher la dessiccation cornéenne, fixez les pattes aux électrodes de scène, et insérez une sonde de température rectale lubrifiée. Retirer la fourrure dans la zone d'intérêt à l'aide d'une crème dépilatoire.
  5. Assurez-vous que la crème dépilatoire est terminée. Ensuite, appliquez une quantité généreuse du gel transduisant ultrasonique réchauffé à l'animal. Ceci est particulièrement important pour créer une bonne connexion sur toute la région d'intérêt pour l'imagerie 4D.

2. Acquisition d'ultrasons 4D

  1. Commencez une nouvelle étude sur le système d'échographie et ouvrez la fenêtre d'imagerie en mode B (mode luminosité). Abaissez le transducteur sur l'animal et localisez la région d'intérêt à l'aide des boutons x et y-axe sur la scène, en s'assurant que la fréquence respiratoire ne diminue pas considérablement. Surveillez cela en bas de l'écran.
  2. Placez le transducteur au milieu de la région d'intérêt. À partir de là, approximatif de la distance nécessaire pour que le transducteur se déplace de haut en bas de sorte que toute la région d'intérêt est incluse.
  3. Entrez les dimensions approximatives dans le code logiciel informatique, y compris une taille d'étape qui est généralement de 0,08 mm pour l'imagerie aurifysm aortique abdominale. Commencez à exécuter le code après s'assurer que les fréquences cardiaques et respiratoires de l'animal sont stables. Ceci est important pour réduire les erreurs lors de la reconstruction d'images.
  4. Après avoir terminé l'acquisition d'image, exportez les données sous forme de fichiers XML bruts.

3. Conversion de données d'ultrason 4D

  1. Entrez les fichiers XML bruts dans un logiciel qui peut convertir les données dans le format approprié pour l'analyse des taches 3D. Ici, nous utilisons Matlab pour convertir les fichiers XML en fichiers MAT. Le script Matlab complet est disponible ici.
  2. Pour une conversion appropriée, le nombre d'images, la taille de l'étape et la résolution de sortie souhaitée devront également être saisis.
  3. Après avoir rééchantillonné la matrice par avion, importer le nouveau fichier MAT dans le code d'analyse des souches 3D.

4. Analyse 3D du code de contrainte

  1. Commencez l'analyse en ajustant correctement le fichier MAT importé. Par exemple, le volume d'image peut devoir être redimensionné pour réduire le temps de calcul.
  2. Entrez la région à analyser et déterminez le modèle de maillage approprié pour segmenter les données d'image sous forme de boîtes simples ou de polygones choisis manuellement. La taille de la boîte des régions et l'espacement entre les points du centre peuvent devoir être modifiés pour chaque jeu de données. Les nombres optimaux choisis pour la taille de la boîte seront autour de l'ordre des pixels de la fonctionnalité en cours de suivi, qui peut être approximative en regardant le nombre de pixels en deux dimensions dans une tranche. L'espacement des boîtes déterminera la résolution des champs de contrainte. Plus de boîtes augmenteront la résolution mais peuvent également augmenter considérablement le temps de calcul.
  3. Commencez à calculer les Jacobiens et les gradients itérativement dans chacune de ces régions. Une fois la précomputation terminée, appliquez la fonction de déformation.
  4. Calculer le tenseur de gradient de déformation. Calculez d'abord la souche, puis calculez les eigenvalues et les eigenvectors à l'aide de la méthode d'estimation de la déformation directe.
  5. Tracez ces résultats dans les plans désirés en utilisant une technique telle que la cartographie des couleurs d'un plan coupé pour représenter le champ de tension au-dessus de votre région d'intérêt.

L'imagerie de contrainte tridimensionnelle est employée pour estimer la déformation des tissus mous au fil du temps et pour comprendre la maladie. Le comportement mécanique des tissus mous, tels que la peau, les vaisseaux sanguins, les tendons, et d'autres organes, est fortement influencé par leur composition extracellulaire, qui peut devenir altérée par le vieillissement et la maladie. Dans les tissus biologiques complexes, il est important de caractériser ces changements, qui peuvent affecter de manière significative les propriétés mécaniques et fonctionnelles d'un organe.

La cartographie quantitative des souches utilise des données d'image volumétrique s'agit de données d'image volumétriques et d'une méthode d'estimation directe de la déformation pour calculer les champs de souches tridimensionnelles à variation spatiale variable. Cette vidéo illustrera les principes de la cartographie des souches, démontrera comment la cartographie quantitative des souches est utilisée pour estimer les champs de souches dans des tissus biologiques complexes et discutera d'autres applications.

Les tissus biologiques sont fortement influencés par la composition et l'orientation de l'élastine et du collagène. L'élastine protéique est un composant très élastique des tissus qui s'étirent et se contractent continuellement, comme les vaisseaux sanguins et les poumons. Le collagène est la protéine la plus abondante dans le corps, et est assemblé à partir de polymères triple-héliques individuels qui sont regroupés en fibres plus grandes qui fournissent l'intégrité structurelle aux tissus allant de la peau aux os.

L'orientation de ces protéines va des fibres alignées aux réseaux de maillage fibreux, ce qui affecte les propriétés mécaniques du tissu. La souche est une mesure de la déformation relative des tissus mous au fil du temps, et peut être utilisée pour visualiser les blessures et les maladies. Il est décrit et cartographié à l'aide d'estimations mathématiques.

Pour cartographier la tension dans les organes complexes, tels que le cœur, des données d'ultrason en quatre dimensions, qui fournissent des informations à haute résolution, spatiales et temporelles, peuvent être utilisées. Ensuite, la méthode d'estimation de déformation directe, ou DDE, est appliquée aux données. Un code est utilisé pour estimer la déformation 3D et les souches correspondantes de Green-Lagrange à l'aide de l'équation suivante.

Le tenseur de contrainte Green-Lagrange dépend du tenseur de gradient de déformation et du souautreur d'identité de deuxième ordre. Les tenseurs de gradient de déformation sont traditionnellement estimés à partir des champs de déplacement. Dans la méthode DDE, une fonction de déformation est optimisée pour être directement analogue au tenseur de déformation. La fonction de déformation dépend à la fois de la position spatiale et du paramètre de déformation. Le calcul de la déformation est directement incorporé dans la fonction de déformation. Les neuf premiers éléments représentent le tenseur de gradient de déformation.

Cette méthode est utilisée pour estimer les déformations grandes et localisées dans les tissus mous. Maintenant que nous comprenons les principes de la cartographie des souches, voyons maintenant comment la cartographie des souches est effectuée pour détecter les anévrismes aortiques chez la souris.

Pour commencer la configuration, ouvrez le logiciel Vivo 2100 et connectez l'ordinateur portable au système d'échographie. Assurez-vous que l'unité de surveillance physiologique est allumée pour mesurer la fréquence cardiaque et la température. Ensuite, initialisez l'étape moteur 3D.

Installez le transducteur d'ultrason et assurez-vous que toutes les connexions appropriées sont faites. Ensuite, anesthésiez l'animal qui sera photographié à l'aide de 3% d'isoflurane dans une chambre à abattre. Une fois que la souris est anesthésié, déplacez-la à l'étape chauffée et fixez un cône de nez pour livrer 1-2% isoflurane. Appliquez de l'onde ophtalmique sur les yeux et fixez les pattes aux électrodes de la scène pour surveiller la respiration et la fréquence cardiaque de l'animal. Ensuite, insérez une sonde de température rectale. Appliquer de la crème dépilatoire pour enlever les cheveux de la zone d'intérêt, puis appliquer une généreuse quantité de gel à ultrasons chaud à la zone déplée.

Pour commencer l'acquisition d'image, d'abord, ouvrez la fenêtre d'imagerie et sélectionnez le mode B. Puis abaissez le transducteur sur l'animal et utilisez les boutons x et y-axe sur la scène pour localiser la zone d'intérêt. Surveillez la fréquence respiratoire pour vous assurer qu'elle ne diminue pas considérablement. Placez le transducteur au milieu de la région d'intérêt. Approximatif ensuite de la distance requise pour couvrir toute la région d'intérêt.

Entrez ces dimensions dans le code MATLAB et choisissez une taille d'étape de 0,08 millimètre. Assurez-vous que le cœur et les fréquences respiratoires de l'animal sont stables, puis exécutez le code MATLAB.

Après l'acquisition d'images, exportez les données sous forme de fichiers XML bruts et convertissez-les en fichiers MAT. Assurez-vous d'entrer le nombre d'images, la taille de l'étape et la résolution de sortie. Puis rééchantillonner la matrice dans le plan à travers.

Importer le nouveau fichier MAT dans le code d'analyse des souches 3D. Il peut être nécessaire de redimensionner le fichier pour réduire le temps de calcul. Ensuite, entrez la région à analyser. Approximer le nombre de pixels dans une tranche bidimensionnelle de la fonction suivie et sélectionnez le modèle de maillage soit comme une simple boîte ou des polygones choisis manuellement. Choisissez le nombre de pixels optimal pour la taille du maillage. Calculez les Jacobiens et les gradients. Répéter l'opération pour chaque région. Ensuite, appliquez la fonction de déformation.

Ensuite, à l'aide de déformations cartésiennes calculées à partir de DDE, déterminez les eigenvalues et les eigenvectors de la déformation. Ensuite, sélectionnez les tranches pour lesquelles vous souhaitez tracer les valeurs de tension en faisant défiler l'axe long, l'axe de tri et les vues d'axe coronal.

Appuyez sur Sélectionnez Manifold pour l'analyse. Ensuite, utilisez le curseur pour placer des marqueurs le long de la paroi aortique, y compris le thrombus, l'anévrisme et les parties saines de l'aorte. Répétez pour toutes les vues. Enfin, utilisez la cartographie des couleurs pour tracer les résultats du champ de tension sur la région d'intérêt.

Examinons de près l'exemple d'un angiotensine II-induit ecindant aortique aortique aortique aurifère acquis à partir d'une souris. Tout d'abord, plusieurs boucles de visualisation kilohertz à axe court eCG sont obtenues à une taille d'étape donnée le long de l'aorte et combinées pour créer des données 4D.

Après avoir effectué le calcul de la souche 3D à l'aide d'une fonction de déformation optimisée, la parcelle de visualisation de la tranche 3D de l'aorte infrarénale est obtenue. La carte couleur de la souche verte principale est superposée pour mettre en évidence les régions de la souche hétérogène de la paroi aortique. De plus, de longues vues d'axe et d'axes courts révèlent des variations spatiales hétérogènes de la souche, en particulier lorsqu'un thrombus est présent.

Les parcelles de souches correspondantes montrent des valeurs de contrainte plus élevées dans les régions saines de l'aorte dans l'axe long, tandis que la région anévrismale montre une diminution de la tension dans l'axe court.

La visualisation quantitative précise de la souche à l'aide de l'estimation de déformation directe est un outil utile utilisé dans diverses applications biomédicales.

Par exemple, la tension cardiaque peut être quantifiée. Pendant le cycle cardiaque, le myocarde subit une déformation 3D. La quantification de la souche en trois dimensions fait partie intégrante de la caractérisation fiable de la dynamique de ce tissu au fil du temps. Ceci est utile dans le suivi de la progression de la maladie dans les modèles animaux.

Une autre application est dans la caractérisation du tissu intestinal. L'imagerie in vivo des intestins est difficile en raison des effets des structures environnantes. Cependant, le calcul de la souche à partir d'images de fibrose intestinale pourrait être particulièrement utile pour fournir une détection précoce des zones problématiques qui nécessitent une intervention chirurgicale.

À une échelle beaucoup plus petite, cette méthode DDE est également appliquée au niveau cellulaire en utilisant des techniques d'imagerie à plus haute résolution telles que la microscopie confocale. Il sert, par exemple, dans la caractérisation de la matrice extracellulaire pour comprendre comment les cellules communiquent sous les changements mécaniques.

Vous venez de regarder l'introduction de JoVE à la visualisation quantitative des souches. Vous devez maintenant comprendre comment mesurer la souche tridimensionnelle dans les tissus biologiques et comment cela est utilisé dans la détection précoce des maladies. Merci d'avoir regardé!

JoVE Science Education is free through June 15th 2020.

RECOMMEND JoVE