Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

3.8: ¿Qué son los ácidos nucleicos?
TABLA DE
CONTENIDOS

JoVE Core
Biology

A subscription to JoVE is required to view this content.

Education
Nucleic acids
 
TRANSCRIPCIÓN

3.8: ¿Qué son los ácidos nucleicos?

Visión general

Los ácidos nucleicos son largas cadenas de nucleótidos unidos entre sí por enlaces fosfodiester. Hay dos tipos de ácidos nucleicos: ácido desoxirribonucleico, o ADN, y ácido ribonucleico, o ARN. Los nucleótidos en el ADN y el ARN se componen de un azúcar, una base de nitrógeno y una molécula de fosfato.

Los ácidos nucleicos son el material genético de la célula

El material hereditario de una célula está compuesto de ácidos nucleicos, que permiten a los organismos vivos transmitir información genética de una generación a otra. Existen dos tipos de ácidos nucleicos: ácido desoxirribonucleico (ADN) y ácido ribonucleico (ARN). El ADN y el ARN difieren muy ligeramente en su composición química, pero desempeñan papeles biológicos completamente diferentes.

Los ácidos nucleicos son polímeros de nucleótidos

Químicamente, los ácidos nucleicos son polinucleótidos, cadenas de nucleótidos. Un nucleótido se compone de tres componentes: un azúcar de pentosa, una base de nitrógeno y un grupo de fosfato. El azúcar y la base juntos forman un nucleósido. Por lo tanto, un nucleótido a veces se conoce como un monofosfato de nucleósido. Cada uno de los tres componentes de un nucleótido desempeña un papel clave en el ensamblaje general de ácidos nucleicos.

Como su nombre indica, un azúcar pentosa tiene cinco átomos de carbono, que están etiquetados 1o, 2o, 3o, 4o, y 5o. El azúcar pentosa en el ARN es ribosa, lo que significa que el carbono de 2o lleva un grupo hidroxilo. El azúcar en el ADN es desoxirribosa, lo que significa que el carbono de 2o está unido a un átomo de hidrógeno. El azúcar se une a la base de nitrógeno en el carbono de 1o y la molécula de fosfato en el carbono de 5o.

Nucleótidos están unidos entre sí por los enlaces fosfodiester

La molécula de fosfato unida a los 5o carbono de un nucleótido puede formar un enlace covalente con el grupo de 3o hidroxilo de otro nucleótido, uniendo los dos nucleótidos. Este vínculo covalente se llama un vínculo fosfodiester. El enlace fosfodiester entre nucleótidos crea una columna vertebral alterna de azúcar y fosfato en una cadena de polinucleótidos. La unión del extremo 5o de un nucleótido con el extremo 3o de otro da direccionalidad a la cadena de polinucleótidos, que desempeña un papel clave en la replicación del ADN y la síntesis de ARN. En un extremo de la cadena de polinucleótidos, llamado extremo 3o, el azúcar tiene un grupo libre 3o hidroxilo. En el otro extremo, el extremo 5o, el azúcar tiene un grupo libre 5o fosfato.

Pirimidinas y purinas son las dos principales clases de bases de nitrógeno

Las bases de nitrógeno son moléculas que contienen uno o dos anillos compuestos de átomos de carbono y nitrógeno. Estas moléculas se llaman "bases" porque son químicamente básicas, y pueden unirse a los iones de hidrógeno. Hay dos clases de bases de nitrógeno: pirimidinas y purinas. Las pirimidinas tienen una estructura de anillo de seis miembros, mientras que las purinas se componen de un anillo de seis miembros fusionado a un anillo de cinco miembros. Las pirimidinas incluyen citosina (C), timina (T) y uracilo (U). Las purinas incluyen adenina (A) y guanina (G).

La citosina, la adenina y la guanina están presentes tanto en el ADN como en el ARN. Sin embargo, la timina es específica del ADN, y el uracilo se encuentra sólo en el ARN. Las purinas y pirimidinas pueden formar enlaces de hidrógeno entre sí en un patrón particular, basado en la presencia de grupos químicos complementarios que son análogos a las piezas de un rompecabezas. En condiciones celulares normales, la adenina forma enlaces de hidrógeno con timina (en ADN) o uracilo (en ARN), mientras que la guanina forma enlaces de hidrógeno con citosina. Este emparejamiento base complementario es fundamental para la estructura y la función del ADN.

Estructura del ADN y el ARN

El ADN adopta una estructura helicoidal doble dentro de la célula. Una doble hélice se compone de dos cadenas de polinucleótidos, llamadas hebras, que se rodean unas a otras de una manera helicoidal (es decir, espiral).Las dos hebras están en orientaciones opuestas, o son "antiparalelas" entre sí, lo que significa que el extremo 5o de una hebra está cerca del extremo 3o de otra. Las dos hebras se mantienen unidas a través del emparejamiento base complementario (por ejemplo, citosina con guanina).

En una doble hélice de ADN, la columna vertebral de azúcar-fosfato está presente en el exterior, mientras que las bases unidas al hidrógeno están en el interior. El ARN se produce principalmente como una molécula de una sola cadena. La única hebra de ARN puede formar estructuras secundarias localizadas a través del emparejamiento de base complementario intra-hebra. Los diferentes tipos de estructuras secundarias de ARN tienen funciones distintas dentro de la célula.


Lectura sugerida

Tags

Nucleic Acids Polymers Nucleotides Pentose Sugar Phosphate Group Nitrogen Base Deoxyribose Sugar Ribose Sugar DNA RNA Phosphate Sugar Backbone Phosphodiester Linkage Directionality Sequence Five Prime To Three Prime One Prime Carbon Nitrogen Base Pyrimidines Cytosine Thymine Uracil Purines Adenine Guanine Double-helix DNA Hydrogen Bonds

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter