Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

5.3: Das Flüssig-Mosaik-Modell
INHALTSVERZEICHNIS

JoVE Core
Biology

This content is Free Access.

Education
The Fluid Mosaic Model
 
PROTOKOLLE

5.3: The Fluid Mosaic Model

5.3: Das Flüssig-Mosaik-Modell

The fluid mosaic model was first proposed as a visual representation of research observations. The model comprises the composition and dynamics of membranes and serves as a foundation for future membrane-related studies. The model depicts the structure of the plasma membrane with a variety of components, which include phospholipids, proteins, and carbohydrates. These integral molecules are loosely bound, defining the cell’s border and providing fluidity for optimal function.

Lipids

The most abundant component of the fluid mosaic model is lipids. Lipids include both phospholipids and cholesterols. Phospholipids are amphipathic, having both hydrophobic and hydrophilic parts. They consist of a hydrophilic—water-loving—head, and two hydrophobic—water-fearing—fatty acid tails. Phospholipids spontaneously form a lipid bilayer that separates the inside of the cell from the outside. The lipid bilayer consists of the hydrophobic tails facing inward and the hydrophilic heads facing the aqueous environment inside and outside the cell. Cholesterols are a class of steroids that play a role in regulating membrane fluidity and flexibility. Membrane fluidity facilitates the transport of specific molecules and ions across the plasma membrane.

Proteins

The second major component of the mosaic is proteins. Proteins can differentially associate with the lipid bilayer. For instance, some are entirely integrated into the membrane, like integrins that serve as transmembrane receptors, and transport proteins that shuttle molecules across membranes. Such integrated proteins are referred to as integral proteins. Other proteins can be found only on the surface of the cell or in the cytosol, as is the case with estrogen receptors. These proteins are referred to as peripheral proteins.

Carbohydrates

The last component of the fluid mosaic model is carbohydrates. They are located on the exterior surface of the membrane where they are bound to proteins to form glycoproteins, or to phospholipids to form glycolipids. These carbohydrate complexes are referred to as the glycocalyx—the sugar coating of the cell. Some carbohydrates in the mosaic also play essential roles as markers allowing cells to distinguish between self (cells of the same organism) and non-self (intruding foreign cells or particles).

Together, these components create a cell’s plasma membrane, with a thickness ranging between five to ten nanometers. Plasma membranes interact with their surroundings to carry out many essential processes to maintain cellular function and homeostasis.

Das Flüssig-Mosaik-Modell wurde zunächst als visuelle Darstellungsmethode für Forschungsbeobachtungen vorgeschlagen. Das Modell umfasst die Zusammensetzung und Dynamik von Membranen und dient als Grundlage für zukünftige membranbezogene Forschungen. Das Modell bildet die Struktur der Plasmamembran mit einer Vielzahl von Komponenten ab, zu denen Phospholipide, Proteine und Kohlenhydrate gehören. Diese integralen Moleküle sind locker gebunden, definieren die Grenze der Zelle und bieten für die optimale Funktionsweise Fluidität.

Lipide

Die am häufigsten vorkommende Komponente des Flüssig-Mosaik-Modells sind die Lipide. Zu den Lipiden gehören sowohl Phospholipide als auch Cholesterine. Phospholipide sind amphipathisch und haben sowohl hydrophobe als auch hydrophile Bestandteile. Sie bestehen aus einem hydrophilen (wasserliebenden) Kopf und zwei hydrophoben (wasserabweisenden) Fettsäureschwänzen. Die Phospholipide bilden spontan eine Lipid-Doppelschicht, die das Zellinnere von der Außenseite trennt. Die Lipid-Doppelschicht besteht aus den nach innen gerichteten hydrophoben Schwänzen und den hydrophilen Köpfen, die der wässrigen Umgebung innerhalb und außerhalb der Zelle zugewandt sind. Cholesterine sind eine Klasse von Steroiden, die eine Rolle bei der Regulierung der Membranfluidität und-flexibilität spielen. Die Membranfluidität erleichtert den Transport von spezifischen Molekülen und Ionen durch die Plasmamembran.

Proteine

Der zweite Hauptbestandteil des Mosaik-Modells sind die Proteine. Proteine können unterschiedlich mit der Lipid-Doppelschicht assoziieren. Einige sind beispielsweise vollständig in die Membran integriert, wie sogenannte Integrine, die als Transmembranrezeptoren dienen. Sie transportieren Proteine, welche Moleküle über die Membranen hinwegbewegen. Solche integrierten Proteine bezeichnet man als Membranproteine. Andere Proteine sind hingegen nur auf der Oberfläche der Zelle oder im Zytosol zu finden. Dazu gehören z.B. Östrogenrezeptoren, die als Transmembranrezeptoren dienen. Diese Proteine werden als periphere Proteine bezeichnet.

Kohlenhydrate

Die letzte Komponente des Fluid-Mosaik-Modells sind die Kohlenhydrate. Diese befinden sich auf der äußeren Oberfläche der Membran, wo sie an Proteine gebunden werden, um Glykoproteine zu bilden. Sind sie an Phospholipide gebunden, bilden sie Glykolipide. Diese Kohlenhydrat-Komplexe werden als Glycocalyx bezeichnet. Sie bilden die Zuckerschicht der Zelle. Einige Kohlenhydrate spielen im Mosaik auch eine wichtige Rolle als Marker. Sie ermöglichen es den Zellen, zwischen dem Eigenen (Zellen desselben Organismus) und dem Fremden (eindringende fremde Zellen oder Partikel) zu unterscheiden.

Zusammen bilden diese Komponenten die Plasmamembran einer Zelle. Sie hat in der Regel eine Dicke zwischen fünf und zehn Nanometer. Plasmamembranen interagieren mit ihrer Umgebung, um viele wesentliche Prozesse zur Aufrechterhaltung der Zellfunktion und Homöostase durchzuführen.


Suggested Reading

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter