Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

6.7: Sinalização Sináptica
TABLE OF
CONTENTS

JoVE Core
Biology

A subscription to JoVE is required to view this content. You will only be able to see the first 20 seconds.

Education
Synaptic Signaling
 
TRANSCRIPT

6.7: Synaptic Signaling

6.7: Sinalização Sináptica

Neurons communicate at synapses, or junctions, to excite or inhibit the activity of other neurons or target cells, such as muscles. Synapses may be chemical or electrical.

Most synapses are chemical. That means that an electrical impulse—or action potential—spurs the release of chemical messengers. These chemical messengers are also called neurotransmitters. The neuron sending the signal is called the presynaptic neuron. The neuron receiving the signal is the postsynaptic neuron.

The presynaptic neuron fires an action potential that travels through its axon. The end of the axon, or axon terminal, contains neurotransmitter-filled vesicles. The action potential opens voltage-gated calcium ion channels in the axon terminal membrane. Ca2+ rapidly enters the presynaptic cell (due to the higher external Ca2+ concentration), enabling the vesicles to fuse with the terminal membrane and release neurotransmitters.

The space between presynaptic and postsynaptic cells is called the synaptic cleft. Neurotransmitters released from the presynaptic cell rapidly populate the synaptic cleft and bind to receptors on the postsynaptic neuron. The binding of neurotransmitters instigates chemical changes in the postsynaptic neuron, such as opening or closing ion channels. This, in turn, alters the membrane potential of the postsynaptic cell, making it more or less likely to fire an action potential.

To end signaling, neurotransmitters in the synapse are degraded by enzymes, reabsorbed by the presynaptic cell, diffused away, or cleared by glial cells.

Electrical synapses are present in the nervous system of both invertebrates and vertebrates. They are narrower than their chemical counterparts and transfer ions directly between neurons, allowing faster transmission of the signal. However, unlike chemical synapses, electrical synapses cannot amplify or transform presynaptic signals. Electrical synapses syncronize neuron activity, which is favorable for controlling rapid, invariable signals such as the danger escape in squids.

Neurons can send signals to, and receive them from, many other neurons. The integration of numerous inputs received by postsynaptic cells ultimately determines their action potential firing patterns.

Os neurónios comunicam por sinapses, ou junções, para excitar ou inibir a atividade de outros neurónios ou células-alvo, como músculos. As sinapses podem ser químicas ou elétricas.

A maioria das sinapses são químicas. Isso significa que um impulso elétrico—ou potencial de ação—estimula a libertação de mensageiros químicos. Estes mensageiros químicos também são chamados de neurotransmissores. O neurónio que envia o sinal é chamado de neurónio pré-sináptico. O neurónio que recebe o sinal é o neurónio pós-sináptico.

O neurónio pré-sináptico dispara um potencial de ação que viaja através do seu axónio. A extremidade do axónio, ou terminal do axónio, contém vesículas cheias de neurotransmissores. O potencial de ação abre canais iónicos de cálcio dependentes de voltagem na membrana terminal do axónio. Ca2+ entra rapidamente na célula pré-sináptica (devido à maior concentração externa de Ca2+, permitindo que as vesículas se fundam com a membrana terminal e libertem neurotransmissores.

O espaço entre as células pré-sinápticas e pós-sinápticas é chamado de fissura sináptica. Os neurotransmissores libertados da célula pré-sináptica povoam rapidamente a fissura sináptica e ligam-se aos receptores do neurónio pós-sináptico. A ligação dos neurotransmissores instiga mudanças químicas no neurónio pós-sináptico, como a abertura ou fecho de canais iónicos. Isso, por sua vez, altera o potencial de membrana da célula pós-sináptica, tornando-a mais ou menos propensa a disparar um potencial de ação.

Para terminar a sinalização, os neurotransmissores na sinapse são degradados por enzimas, reabsorvidos pela célula pré-sináptica, difundidos ou limpos por células da glia.

As sinapses elétricas estão presentes no sistema nervoso de invertebrados e vertebrados. Elas são mais estreitas do que as suas equivalentes químicas e transferem iões diretamente entre os neurónios, permitindo uma transmissão mais rápida do sinal. No entanto, ao contrário das sinapses químicas, as sinapses elétricas não podem amplificar ou transformar sinais pré-sinápticos. As sinapses elétricas sincronizam a atividade do neurónio, o que é favorável para controlar sinais rápidos e invariáveis, como fugir do perigo nas lulas.

Os neurónios podem enviar sinais e recebê-los de muitos outros neurónios. A integração de numerosos sinais recebidos por células pós-sinápticas acabam por determinar os seus padrões de disparo de potenciais de ação.


Suggested Reading

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter