Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

8.4: Etapas da Glicólise que Libertam Energia
TABLE OF
CONTENTS

JoVE Core
Biology

A subscription to JoVE is required to view this content. You will only be able to see the first 20 seconds.

Education
Energy-releasing Steps of Glycolysis
 
TRANSCRIPT

8.4: Energy-releasing Steps of Glycolysis

8.4: Etapas da Glicólise que Libertam Energia

While the first phase of glycolysis consumes energy to convert glucose to glyceraldehyde 3-phosphate (G3P), the second phase produces energy. The energy is released over a sequence of reactions that turns G3P into pyruvate. The energy-releasing phase—steps 6-10 of glycolysis—occurs twice, once for each of the two 3-carbon sugars produced during steps 1-5.

The first energy-releasing step—considered the 6th step of glycolysis overall—consists of two concurrent events: oxidation and phosphorylation of G3P. The electron carrier NAD+ removes one hydrogen from G3P, oxidizing the 3-carbon sugar and converting (reducing) NAD+ to form NADH and H+. The released energy is used to phosphorylate G3P, turning it into 1,3-bisphosphoglycerate.

In the next step, 1,3-bisphosphoglycerate converts ADP to ATP by donating a phosphate group, thereby becoming 3-phosphoglycerate. The 3-phosphoglycerate is then converted into an isomer, 2-phosphoglycerate.

Subsequently, 2-phosphoglycerate loses a water molecule, becoming the unstable molecule 2-phosphoenolpyruvate, or PEP. PEP easily loses its phosphate group to ADP, converting it into a second ATP molecule and becoming pyruvate in the process.

The energy-releasing phase releases two molecules of ATP and one molecule of NADH per converted sugar. Because it occurs twice—for each 3-carbon sugar produced in the energy-requiring phase of glycolysis—four ATP molecules and two NADH molecules are released. Thus, for each glucose molecule, glycolysis results in a net production of two ATP molecules (4 produced minus 2 used during the energy-requiring phase) and two NADH molecules.

Glycolysis produces two 3-carbon pyruvate molecules from one 6-carbon glucose molecule. In the presence of oxygen, pyruvate can be broken down into carbon dioxide in the Krebs cycle, releasing many ATP molecules. NADH amasses in the cell, where it can be converted back into NAD+ and used for further glycolysis.

Enquanto que a primeira etapa da glicólise requer energia para converter glicose em gliceraldeído 3-fosfato (G3P), a segunda etapa produz energia. A energia é libertada ao longo de uma sequência de reações que transformam G3P em piruvato. A etapa de libertação de energia—passos 6-10 da glicólise—ocorre duas vezes, uma vez para cada um dos dois açúcares de 3 carbonos produzidos durante as etapas 1-5.

O primeiro passo de libertação de energia—considerado o 6o passo da glicólise global—consiste em dois eventos simultâneos: oxidação e fosforilação do G3P. O portador de eletrões NAD+ remove um hidrogénio do G3P, oxidando o açúcar de 3 carbonos e convertendo (reduzindo) NAD+ para formar NADH e H+. A energia libertada é usada para fosforilarizar G3P, transformando-o em 1,3-bifosfoglicerato.

No passo seguinte, 1,3-bifosfoglicerato converte ADP em ATP doando um grupo fosfato, tornando-se assim 3-fosfoglicerato. O 3-fosfoglicerato é então convertido em um isómero, 2-fosfoglicerato.

Posteriormente, o 2-fosfoglicerato perde uma molécula de água, tornando-se a molécula instável 2-fosfoenolpiruvate, ou PEP. PEP perde facilmente o seu grupo fosfato para ADP, convertendo-o em uma segunda molécula de ATP e tornando-se piruvato no processo.

A fase de libertação de energia liberta duas moléculas de ATP e uma molécula de NADH por açúcar convertido. Como ocorre duas vezes—para cada açúcar de 3 carbonos produzido na etapa da glicólise que requer energia—quatro moléculas de ATP e duas moléculas de NADH são libertadas. Assim, para cada molécula de glicose, a glicólise resulta em uma produção líquida de duas moléculas ATP (4 produzidas menos 2 usadas durante a fase que requer energia) e duas moléculas de NADH.

A glicólise produz duas moléculas de piruvato de 3 carbonos a partir de uma molécula de glicose de 6 carbonos. Na presença de oxigénio, o piruvato pode ser separado em dióxido de carbono no ciclo de Krebs, libertando muitas moléculas de ATP. O NADH acumula-se na célula, onde pode ser convertido de volta em NAD+ e usado para mais glicólise.


Suggested Reading

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter