Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

8.10: Quimiosmose
TABLE OF
CONTENTS

JoVE Core
Biology

A subscription to JoVE is required to view this content. You will only be able to see the first 20 seconds.

Education
Chemiosmosis
 
TRANSCRIPT

8.10: Chemiosmosis

8.10: Quimiosmose

Overview

Oxidative phosphorylation is a highly efficient process that generates large amounts of adenosine triphosphate (ATP), the basic unit of energy that drives many processes in living cells. Oxidative phosphorylation involves two processes—electron transport and chemiosmosis. During electron transport, electrons are shuttled between large complexes on the inner mitochondrial membrane and protons (H+) are pumped across the membrane into the intermembrane space, creating an electrochemical gradient. In the next step, protons flow back down their gradient into the mitochondrial matrix via ATP synthase, a protein complex embedded within the inner membrane. This process, called chemiosmosis, uses the energy of the proton gradient to drive the synthesis of ATP from adenosine diphosphate (ADP).

Electron Transport Chain

The electron transport chain is a series of complexes that transfer electrons from electron donors to electron acceptors via simultaneous reduction and oxidation reactions, otherwise known as redox reactions. At the end of the chain, electrons reduce molecular oxygen to produce water.

The shuttling of electrons between complexes is coupled with proton transfer, whereby protons (H+ ions) travel from the mitochondrial matrix to the intermembrane space against their concentration gradient. Eventually, the high concentration of protons in the intermembrane space forces protons down their concentration gradient back into the mitochondrial matrix through ATP synthase, thus producing ATP. This process, which uses energy stored in the proton gradient across the membrane to drive cellular work, is called chemiosmosis.

ATP Synthase

The structure responsible for the movement of protons across the inner mitochondrial membrane is the protein complex ATP synthase. It consists of a stator—the channel in which hydrogen ions enter and leave the complex, a multi-unit rotor (F0) embedded within the membrane, and a knob of catalytic proteins (F1) located in the mitochondrial matrix. The F0 rotor spins as hydrogen ions bind to, and change the shape of, each sub-unit. The spinning rotor then turns an internal rod that changes the conformation of F1 that facilitates its binding to ADP and inorganic phosphate, resulting in the production of ATP.

ATP Production

The process of aerobic respiration can produce a total of 30 or 32 ATP per molecule of glucose consumed (Figure 3). Four ATP are produced during glycolysis, but two are consumed in the process, resulting in a net total of two ATP molecules. One ATP molecule is produced per round of the Krebs cycle, and two cycles occur for every molecule of glucose, producing a net total of two ATP. Finally, 26 or 28 ATP are produced in the electron transport chain through oxidative phosphorylation, depending on whether NADH or FADH2 is used as the electron carrier.

Visão Geral

A fosforilação oxidativa é um processo altamente eficiente que produz grandes quantidades de trifosfato de adenosina (ATP), a unidade básica de energia que guia muitos processos em células vivas. A fosforilação oxidativa envolve dois processos—transporte de eletrões e quimiosmose. Durante o transporte de eletrões, os eletrões são transferidos entre grandes complexos na membrana mitocondrial interna e são bombeados protões (H+) através da membrana para o espaço intermembranar, criando um gradiente eletroquímico. Na fase seguinte, os protões fluem de volta para o seu gradiente mais baixo para a matriz mitocondrial através da ATP sintase, um complexo proteico incorporado dentro da membrana interna. Este processo, chamado quimiosmose, usa a energia do gradiente de protões para guiar a síntese de ATP a partir de difosfato de adenosina (ADP).

Cadeia de Transporte de Eletrões

A cadeia de transporte de eletrões é uma série de complexos que transferem eletrões de dadores de eletrões para aceitadores de eletrões através de reações simultâneas de redução e oxidação, também conhecidas como reações redox. No final da cadeia, eletrões reduzem o oxigénio molecular para produzir água.

O transporte de eletrões entre complexos está associado à transferência de protões, em que protões (iões H+) viajam da matriz mitocondrial para o espaço intermembranar contra seu gradiente de concentração. Eventualmente, a alta concentração de protões no espaço intermembranar força os protões para gradientes de concentração mais baixos de volta para a matriz mitocondrial através da ATP sintase, produzindo assim ATP. Este processo, que usa energia armazenada no gradiente de protões através da membrana para guiar o trabalho celular, é chamado de quimiosmose.

ATP Sintase

A estrutura responsável pelo movimento de protões através da membrana mitocondrial interna é o complexo proteico ATP sintase. Consiste em um estator—o canal por onde iões de hidrogénio entram e saem do complexo, um rotor multi-unidades (F0) embutido dentro da membrana, e uma protuberância de proteínas catalíticas (F1) localizada na matriz mitocondrial. O rotor F0 roda à medida que iões de hidrogénio se ligam e alteram a forma de cada subunidade. O rotor giratório roda então uma haste interna que muda a conformação de F1 facilitando a sua ligação com ADP e fosfato inorgânico, resultando na produção de ATP.

Produção de ATP

O processo de respiração aeróbica pode produzir um total de 30 ou 32 ATP por molécula de glicose consumida (Figura 3). Quatro ATP são produzidos durante a glicólise, mas dois são consumidos no processo, resultando em um total líquido de duas moléculas de ATP. Uma molécula de ATP é produzida por cada ronda do ciclo de Krebs, e dois ciclos ocorrem para cada molécula de glicose, produzindo um total líquido de dois ATP. Finalmente, 26 ou 28 ATP são produzidos na cadeia de transporte de eletrões através da fosforilação oxidativa, dependendo se é usado NADH ou FADH2 como portador de eletrões.


Suggested Reading

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter