Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

13.1: Die DNA-Helix
INHALTSVERZEICHNIS

JoVE Core
Biology

This content is Free Access.

Education
The DNA Helix
 
PROTOKOLLE

13.1: The DNA Helix

13.1: Die DNA-Helix

Overview

Deoxyribonucleic acid, or DNA, is the genetic material responsible for passing traits from generation to generation in all organisms and most viruses. DNA is composed of two strands of nucleotides that wind around each other to form a double helix. The discovery of the structure of DNA occurred incrementally over nearly a century, representing one of the most famous and captivating stories in the history of science.

DNA Structure in Detail

Each strand of DNA consists of subunits called nucleotides that contain the sugar deoxyribose, a phosphate group, and one of four nitrogen-containing bases: adenine (A), guanine (G), cytosine (C), and thymine (T). Adenine and guanine are members of a larger class of chemicals called purines that all contain two-ringed structures. Cytosine and thymine belong to a group of single-ringed structures called pyrimidines.

Adjacent nucleotides in the same strand are covalently linked by phosphodiester bonds. The two strands of nucleotides are held together by hydrogen bonds, in which the adenines in one strand pair with thymines at the same position in the other strand, and the cytosines in one strand pair with guanines in the same position in the other strand. This hydrogen bonding is made possible by the antiparallel arrangement of the two DNA strands, in which the 5’ and 3’ ends of the strands are oriented in opposite directions. Without this arrangement, the nucleotides would be in the wrong position to form hydrogen bonds between strands.

The two strands of the DNA molecule are tightly wound into a spring-like structure called a double helix. However, the double helix is not perfectly symmetrical. Instead, there are regularly occurring grooves in the structure. The major groove occurs where the sugar-phosphate backbones are relatively far apart. This space grants access to DNA-binding proteins, such as transcription factors. The minor groove, by contrast, occurs where the sugar-phosphate backbones are close together. Relatively few proteins bind to DNA via the minor groove.

The Discovery of DNA Structure: A Brief History

The story of the discovery of DNA structure begins in 1869 when Swiss scientist Friedrich Miescher discovered a substance he called “nuclein”. In the process of extracting protein from white blood cells, Miescher found an unexpected substance that had relatively high phosphorus content. He did not know what it was, but he suspected that it could be biologically important. Miescher was right, but it took decades for the scientific community to fully appreciate his insights.

The next critical discovery was made by Russian biochemist Phoebus Levene. In 1919, Levene proposed that nuclein, by then known as a nucleic acid, was composed of chains of molecules that he called polynucleotides. Levene’s proposal stemmed from his research on yeast, in which he found that individual nucleotides were composed of a phosphate group, a sugar, and a nitrogen-containing base. Although Levene’s polynucleotide model was correct in many respects, it was still unclear how the bases were arranged in the DNA molecule.

The Austrian biochemist Erwin Chargaff expanded on the work of Levene. Working in the late 1940s, Chargaff made a key finding: the amount of adenine in DNA is always roughly equal to the amount of thymine, and the amount of guanine is always roughly equal to the amount of cytosine. This pattern became known as Chargaff’s Rule and was a key piece of evidence that enabled the final elucidation of DNA structure.

In the early 1950s, American biologist James Watson and English physicist Francis Crick were racing their chief rival, American Linus Pauling, to discover the three-dimensional structure of DNA. Building on the work of Chargaff, they used knowledge of physics, mathematics, and chemistry to construct physical models of DNA. But they were unsuccessful until they received a critical piece of data: an X-ray ‘photograph’ of DNA that indicated in precise detail its double-helical structure. This photograph was the unpublished data of physicist Rosalind Franklin and was given to Watson and Crick without Franklin’s knowledge. Watson and Crick published their description of DNA structure in 1953, and together with Maurice Wilkins (a co-worker of Franklin’s), they won the 1962 Nobel Prize in Physiology or Medicine for this discovery. Sadly, Franklin died in 1958 and was therefore ineligible for a Nobel Prize.

Überblick

Deoxyribonucleinsäure, oder DNA, ist das genetische Material, das für die Weitergabe von Merkmalen von Generation zu Generation in allen Organismen und den meisten Viren zuständig ist. Die DNA besteht aus zwei Strängen von Nucleotiden, die sich umeinanderwinden und eine Doppelhelix bilden. Die Struktur der DNA wurde über fast ein Jahrhundert hinweg schrittweise entdeckt und stellt eine der berühmtesten und fesselndsten Geschichten in der Geschichte der Wissenschaft dar.

Die DNA-Struktur im Detail

Jeder DNA-Strang besteht aus Untereinheiten. Man nennt sie Nucleotide. Diese Nucleotide bestehen aus dem Zucker Desoxyribose, einer Phosphatgruppe und eine von vier stickstoffhaltigen Basen. Diese sind folgende: Adenin (A), Guanin (G), Cytosin (C) und Thymin (T). Adenin und Guanin gehören zu einer größeren Klasse von Chemikalien, den Purinen und enthalten zwei Ringe. Cytosin und Thymin gehören zu einer Gruppe von Strukturen mit einem Ring, die Pyrimidine genannt werden.

Benachbarte Nucleotide im gleichen Strang sind kovalent über Phosphodiesterbindungen verknüpft. Die beiden Nucleotidstränge werden durch Wasserstoffbrückenbindungen zusammengehalten, wobei die Adenine im einen Strang mit Thyminen an der gleichen Position im anderen Strang und die Cytosine im einen Strang mit Guaninen an der gleichen Position im anderen Strang paarweise verbunden sind. Diese Wasserstoffbindung wird durch die antiparallele Anordnung der beiden DNA-Stränge ermöglicht. Dabei sind die 5- und 3-Enden der Stränge in entgegengesetzter Richtung ausgerichtet. Ohne diese Anordnung wären die Nucleotide in der falschen Position und könnten keine Wasserstoffbrücken zwischen den Strängen bilden.

Die beiden Stränge des DNA-Moleküls sind fest zu einer federartigen Struktur, einer sogenannten Doppelhelix, aufgewickelt. Die Doppelhelix ist jedoch nicht perfekt symmetrisch. Stattdessen gibt es regelmäßig auftretende Rillen in der Struktur. Die Hauptrille entsteht dort, wo die Zucker-Phosphat-Rückgrate relativ weit auseinander liegen. Dieser Raum ermöglicht den Zugang zu DNA-bindenden Proteinen, wie zum Beispiel Transkriptionsfaktoren. Die kleine Rille hingegen entsteht dort, wo die Zucker-Phosphat-Rückgrate dicht beieinander liegen. Über die kleine Rille binden relativ wenige Proteine an die DNA.

Die Entdeckung der DNA-Struktur: Eine kurze Zusammenfassung

Die Geschichte der Entdeckung der DNA-Struktur begann 1869, als der Schweizer Wissenschaftler Friedrich Miescher eine Substanz entdeckte, die er Nuclein nannte. Bei der Extraktion von Eiweiß aus weißen Blutkörperchen fand Miescher eine unerwartete Substanz, die einen relativ hohen Phosphorgehalt aufwies. Er wusste nicht, was es war, vermutete aber, dass es in der Bioloige von Bedeutung sein könnte . Miescher hatte Recht. Es dauerte aber Jahrzehnte, bis die wissenschaftliche Fachwelt seine Erkenntnisse voll zu schätzen lernte.

Die nächste wichtige Entdeckung machte der russische Biochemiker Phoebus Levene. Im Jahre 1919 schlug Levene vor, dass Nucleinsäure aus Ketten von Molekülen zusammengesetzt war, die er Polynucleotide nannte. Levenes Vorschlag stammte aus seiner Forschung über Hefen, in der er feststellte, dass einzelne Nucleotide aus einer Phosphatgruppe, einem Zucker und einer stickstoffhaltigen Base zusammengesetzt waren. Obwohl das Polynucleotidmodell von Levene in vielerlei Hinsicht korrekt war, war noch unklar, wie die Basen im DNA-Molekül angeordnet sind.

Der österreichische Biochemiker Erwin Chargaff erweiterte die Arbeiten von Levene. Ende der 1940er Jahre machte Chargaff eine wichtige Entdeckung: Die Menge an Adenin in der DNA ist immer ungefähr gleich der Menge an Thymin. Gleichzeitig ist die Menge an Guanin immer ungefähr gleich wie der an Cytosin. Dieses Muster wurde als Chargaffs Regel bekannt und war ein wesentlicher Beweis, der die endgültige Aufklärung der DNA-Struktur ermöglichte.

In den frühen 1950er Jahren lieferten sich der amerikanische Biologe James Watson und der englische Physiker Francis Crick ein Rennen mit ihrem Hauptkonkurrenten, dem Amerikaner Linus Pauling. Alle Wissenschaftler wollten zuerst die dreidimensionale Struktur der DNA aufdecken. Aufbauend auf den Arbeiten von Chargaff nutzten sie Kenntnisse der Physik, Mathematik und Chemie, um physikalische Modelle der DNA zu konstruieren. Sie hatten jedoch keinen Erfolg, bis sie ein entscheidenes Indiz für den Aufbau erhielten: ein Röntgenbild , ein „Foto“ der DNA, das ihre doppelhelikale Struktur genau zeigte. Dieses Foto war ein unveröffentlichtes Datenmaterial der Physikerin Rosalind Franklin und wurde Watson und Crick ohne Franklins Wissen zur Verfügung gestellt. Watson und Crick veröffentlichten 1953 ihre Beschreibung der DNA-Struktur und gewannen zusammen mit Maurice Wilkins (ein Mitarbeiter von Franklins) 1962 einen Nobelpreis für Physiologie und Medizin für diese Entdeckung. Leider starb Franklin 1958 und war daher nicht für einen Nobelpreis nominiert.


Suggested Reading

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter