Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

13.4: Die Karyotypisierung
INHALTSVERZEICHNIS

JoVE Core
Biology

A subscription to JoVE is required to view this content. You will only be able to see the first 20 seconds.

Education
Karyotyping
 
PROTOKOLLE

13.4: Karyotyping

13.4: Die Karyotypisierung

Overview

Describing the number and physical features of chromosomes can reveal abnormalities that underlie genetic diseases. This description is facilitated by special staining techniques that produce a particular banding pattern on each chromosome. State-of-the-art techniques make this approach even more powerful, enabling the detection of individual genes that cause disease.

A Simple Chromosome Staining Technique Provides Valuable Scientific Insight

Some genetic diseases can be detected by looking at the structure and number of chromosomes that form when DNA is compacted during mitosis. Once chromosomes are formed, cytogeneticists halt mitosis and perform the staining. The staining produces a distinct banding pattern that reveals different characteristics such as number, shape, and type of chromosomes. Such a description of an individual’s chromosomes is called a karyotype.

To facilitate karyotyping, an image is taken of the stained chromosomes, and individual chromosomes are identified and cut out from the image. The chromosomes are then arranged in pairs and ordered by size. This layout is called a karyogram. In a human karyogram, the 22 autosomes are labeled 1 through 22, from the largest to the smallest pair. The two sex chromosomes are labeled X or Y. A karyogram makes it easy to spot missing or additional pieces of a chromosome, or a whole extra copy, all of which can underlie genetic diseases.

Karyograms Can Reveal Genetic Disorders

Marthe Gautier, Jérôme Lejeune, and Raymond Turpin discovered in 1959 that patients with Down syndrome had a third copy of chromosome 21. Down syndrome is therefore also called trisomy 21. People with Down syndrome typically have mild to severe intellectual disability and physical symptoms including delayed growth, but individuals vary widely in the degree to which they are affected. Down syndrome is caused when the copies of chromosome 21 fail to separate into distinct sperm or egg cells during meiosis. The result is a germ cell with 24 chromosomes instead of the usual 23. When such a germ cell fuses with a cell of the other parent during fertilization, the resulting zygote has 47 chromosomes. In a small percentage of Down syndrome cases only an extra piece of chromosome 21 is present, usually fused to a different chromosome.

Highly Sensitive Staining Methods Help Pinpoint the Genetic Basis of Disease

Cytogeneticists nowadays extract much more information from a karyogram than merely the chromosome number and structure due to advances in molecular biology, chemistry, and instrumentation. The lichen-derived dye that was used in the first cytogenetic studies was replaced by more stable dyes such as Giemsa. Giemsa stains some parts of the DNA strand stronger than others, depending on base composition and chromatin structure. The resulting pattern of staining intensity is called G-banding. This pattern is reproducible and identical for individuals of a species, so abnormalities are easy to spot. There are several methods available to produce banding patterns, which facilitates diagnosis of different chromosomal abnormalities.

Überblick

Die Beschreibung der Anzahl und der physischen Merkmale von Chromosomen kann Anomalien aufdecken, welche genetischen Krankheiten zugrunde liegen. Diese Beschreibung wird durch spezielle Färbeverfahren erleichtert, die auf jedem Chromosom ein bestimmtes Bänderungsmuster erzeugen. Modernste Techniken machen diesen Ansatz noch effizienter und ermöglichen den Nachweis einzelner krankheitsauslösender Gene.

Eine einfache Technik zur Chromosomenfärbung liefert wertvolle wissenschaftliche Erkenntnisse

Einige genetische Krankheiten können durch die Struktur und Anzahl der Chromosomen erkannt werden, die sich bei der Verdichtung der DNA während der Mitose bilden. Sobald die Chromosomen gebildet sind, stoppen die Zytogenetiker die Mitose und führen eine Färbung durch. Die Färbung erzeugt ein deutliches Bänderungsmuster, das verschiedene Merkmale wie Anzahl, Form und Art der Chromosomen zeigt. Eine solche Beschreibung eines individuellen Chromosoms wird Karyotyp genannt.

Um die Karyotypisierung zu erleichtern, wird ein Bild der gefärbten Chromosomen aufgenommen. Einzelne Chromosomen werden identifiziert und aus dem Bild ausgeschnitten. Die Chromosomen werden dann paarweise angeordnet und nach Größe geordnet. Diese Anordnung wird Karyogramm genannt. In einem menschlichen Karyogramm werden die 22 Autosomen vom größten bis zum kleinsten Paar mit 1 bis 22 bezeichnet. Die beiden Geschlechtschromosomen sind mit X oder Y gekennzeichnet. Ein Karyogramm macht es einfach, fehlende oder zusätzliche Teile eines Chromosoms oder eine ganze Extrakopie zu erkennen, die alle genetischen Krankheiten zugrunde liegen können.

Karyogramme können genetische Störungen aufdecken

Marthe Gautier, Jérôme Lejeune, und Raymond Turpin entdeckten 1959, dass Patienten mit Down-Syndrom eine dritte Kopie des Chromosoms 21 besitzen. Das Down-Syndrom wird daher auch Trisomie 21 genannt. Menschen mit Down-Syndrom haben typischerweise leichte bis schwere geistige Behinderungen und körperliche Symptome, wozu verzögertes Wachstum gehört. Die Betroffenen unterscheiden sich jedoch sehr stark in dem Grad, in dem sie betroffen sind. Das Down-Syndrom wird verursacht, wenn sich die Kopien des Chromosoms 21 während der Meiose nicht in unterschiedliche Spermien oder Eizellen trennen können. Das Ergebnis ist eine Keimzelle mit 24 statt der üblichen 23 Chromosomen. Wenn eine solche Keimzelle während der Befruchtung mit einer Zelle des anderen Elternteils verschmilzt, hat die entstehende Zygote 47 Chromosomen. In einem kleinen Prozentsatz der Fälle des Down-Syndroms ist nur ein zusätzliches Stück des Chromosoms 21 vorhanden, das normalerweise mit einem anderen Chromosom verschmolzen ist.

Hochempfindliche Färbemethoden helfen, die genetische Basis einer Krankheit zu bestimmen

Zytogenetiker extrahieren heutzutage aufgrund der Fortschritte in der Molekularbiologie, Chemie und Instrumentierung viel mehr Informationen aus einem Karyogramm als lediglich die Chromosomenzahl und-struktur. Der von Flechten abgeleitete Farbstoff, der in den ersten zytogenetischen Studien verwendet wurde, wurde durch stabilere Farbstoffe wie Giemsa ersetzt. Giemsa färbt einige Teile des DNA-Strangs stärker als andere, abhängig von der Basenzusammensetzung und der Chromatinstruktur. Das resultierende Muster der Färbungsintensität wird als G-Band bezeichnet. Dieses Muster ist reproduzierbar und identisch für Individuen einer Spezies, so dass Anomalien leicht zu erkennen sind. Es gibt verschiedene Methoden zur Erzeugung von Bandmustern, was die Diagnose verschiedener Chromosomenanomalien erleichtert.


Suggested Reading

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter