Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

13.6: Replicación en eucariotas
TABLA DE
CONTENIDO

JoVE Core
Biology

This content is Free Access.

Education
Replication in Eukaryotes
 
Esta voz en off está generada por computadora
TRANSCRIPCIÓN

13.6: Replication in Eukaryotes

13.6: Replicación en eucariotas

Overview

In eukaryotic cells, DNA replication is highly conserved and tightly regulated. Multiple linear chromosomes must be duplicated with high fidelity before cell division, so there are many proteins that fill specialized roles in the replication process. Replication occurs in three phases: initiation, elongation, and termination, and ends with two complete sets of chromosomes in the nucleus.

Many Proteins Orchestrate Replication at the Origin

Eukaryotic replication follows many of the same principles as prokaryotic DNA replication, but because the genome is much larger and the chromosomes are linear rather than circular, the process requires more proteins and has a few key differences. Replication occurs simultaneously at multiple origins of replication along each chromosome. Initiator proteins recognize and bind to the origin, recruiting helicase to unwind the DNA double helix. At each point of origin, two replication forks form. Primase then adds short RNA primers to the single strands of DNA, which serve as a starting point for DNA polymerase to bind and begin copying the sequence. DNA can only be synthesized in the 5’ to 3’ direction, so replication of both strands from a single replication fork proceeds in two different directions. The leading strand is synthesized continuously, while the lagging strand is synthesized in short stretches 100-200 base pairs in length, called Okazaki fragments. Once the bulk of replication is complete, RNase enzymes remove the RNA primers and DNA ligase joins any gaps in the new strand.

Dividing the Work of Replication among Polymerases

The workload of copying DNA in eukaryotes is divided among multiple different types of DNA polymerase enzymes. Major families of DNA polymerases across all organisms are categorized by the similarity of their protein structures and amino acid sequences. The first families to be discovered were termed A, B, C, and X, with families Y and D identified later. Family B polymerases in eukaryotes include Pol α, which also functions as a primase at the replication fork, and Pol δ and ε, the enzymes that do most of the work of DNA replication on the leading and lagging strands of the template, respectively. Other DNA polymerases are responsible for such tasks as repairing DNA damage,copying mitochondrial and plastid DNA, and filling in gaps in the DNA sequence on the lagging strand after the RNA primers are removed.

Telomeres Protect the Ends of the Chromosomes from Degradation

Because eukaryotic chromosomes are linear, they are susceptible to degradation at the ends. To protect important genetic information from damage, the ends of chromosomes contain many non-coding repeats of highly conserved G-rich DNA: the telomeres. A short single-stranded 3’ overhang at each end of the chromosome interacts with specialized proteins, which stabilizes the chromosome within the nucleus. Because of the manner in which the lagging strand is synthesized, a small amount of the telomeric DNA cannot be replicated with each cell division. As a result, the telomeres gradually get shorter over the course of many cell cycles and they can be measured as a marker of cellular aging. Certain populations of cells, such as germ cells and stem cells, express telomerase, an enzyme that lengthens the telomeres, allowing the cell to undergo more cell cycles before the telomeres shorten.

Visión general

En las células eucariotas, la replicación del ADN está altamente conservada y está estrechamente regulada. Los cromosomas lineales múltiples deben duplicarse con alta fidelidad antes de la división celular, por lo que hay muchas proteínas que llenan roles especializados en el proceso de replicación. La replicación se produce en tres fases: iniciación, alargamiento y terminación, y termina con dos conjuntos completos de cromosomas en el núcleo.

Muchas proteínas orquestan la replicación en el origen

La replicación eucariota sigue muchos de los mismos principios que la replicación del ADN procariotico, pero debido a que el genoma es mucho más grande y los cromosomas son lineales en lugar de circulares, el proceso requiere más proteínas y tiene algunas diferencias clave. La replicación se produce simultáneamente en varios orígenes de replicación a lo largo de cada cromosoma. Las proteínas iniciadoras reconocen y se unen al origen, reclutando helicasa para desenrollar la doble hélice del ADN. En cada punto de origen, se forman dos bifurcaciones de replicación. Primase entonces añade imprimaciones cortas de ARN a las hebras individuales del ADN, que sirven como punto de partida para que la polimerasa del ADN se una y comience a copiar la secuencia. El ADN sólo se puede sintetizar en la dirección de 5' a 3', por lo que la replicación de ambas hebras de una sola horquilla de replicación procede en dos direcciones diferentes. La hebra principal se sintetiza continuamente, mientras que la hebra rezagada se sintetiza en tramos cortos de 100-200 pares base de longitud, llamados fragmentos Okazaki. Una vez completada la mayor parte de la replicación, las enzimas RNase eliminan las imprimaciones de ARN y la ligasa de ADN se une a cualquier hueco en la nueva hebra.

Dividir el trabajo de replicación entre las polimerasas

La carga de trabajo de copiar ADN en eucariotas se divide entre múltiples tipos diferentes de enzimas de la polimerasa del ADN. Las principales familias de polimerasas de ADN en todos los organismos se clasifican por la similitud de sus estructuras proteicas y secuencias de aminoácidos. Las primeras familias en ser descubiertas fueron llamadas A, B, C y X, con las familias Y y D identificadas más tarde. Las polimerasas de la familia B en eucariotas incluyen Pol, que también funciona como una primasa en la horquilla de replicación, y Pol y , las enzimas que hacen la mayor parte del trabajo de replicación de ADN en las hebras principales y retrasadas de la plantilla, respectivamente. Otras polimerasas del ADN son responsables de tareas tales como reparar el daño del ADN, copiar el ADN mitocondrial y plastid, y rellenar los huecos en la secuencia de ADN en la cadena de retraso después de que se eliminan las imprimaciones de ARN.

Los telómeros protegen los extremos de los cromosomas de la degradación

Debido a que los cromosomas eucariotas son lineales, son susceptibles a la degradación en los extremos. Para proteger la información genética importante del daño, los extremos de los cromosomas contienen muchas repeticiones no codificantes de ADN rico en G altamente conservado: los telómeros. Un breve voladizo de una sola cadena de 3' en cada extremo del cromosoma interactúa con proteínas especializadas, lo que estabiliza el cromosoma dentro del núcleo. Debido a la forma en que se sintetiza la cadena de retraso, una pequeña cantidad del ADN telómero no se puede replicar con cada división celular. Como resultado, los telómeros gradualmente se acortan en el transcurso de muchos ciclos celulares y se pueden medir como un marcador de envejecimiento celular. Ciertas poblaciones de células, como las células germinales y las células madre, expresan la telomerasa, una enzima que alarga los telómeros, permitiendo que la célula se someta a más ciclos celulares antes de que los telómeros se acorten.


Lectura sugerida

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter