Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

13.8: Reparação de Pares Errados
TABLE OF
CONTENTS

JoVE Core
Biology

This content is Free Access.

Education
Mismatch Repair
 
TRANSCRIPT

13.8: Mismatch Repair

13.8: Reparação de Pares Errados

Overview

Organisms are capable of detecting and fixing nucleotide mismatches that occur during DNA replication. This sophisticated process requires identifying the new strand and replacing the erroneous bases with correct nucleotides. Mismatch repair is coordinated by many proteins in both prokaryotes and eukaryotes.

The Mutator Protein Family Plays a Key Role in DNA Mismatch Repair

The human genome has more than 3 billion base pairs of DNA per cell. Prior to cell division, that vast amount of genetic information needs to be replicated. Despite the proofreading ability of the DNA polymerase, a copying error occurs approximately every 1 million base pairs. One type of error is the mismatch of nucleotides, for example, the pairing of A with G or T with C. Such mismatches are detected and repaired by the Mutator protein family. These proteins were first described in the bacteria Escherichia coli (E. coli), but homologs appear throughout prokaryotes and eukaryotes.

Mutator S (MutS) initiates the mismatch repair (MMR) by identifying and binding to the mismatch. Subsequently, MutL identifies which strand is the new copy. Only the new strand requires fixing while the template strand needs to remain intact. How can the molecular machinery identify the newly synthesized strand of DNA?

Newly Synthesized Strands of DNA Differ from Their Template Strand

In many organisms, cytosine and adenine bases of the new strand receive a methyl group some time after replication. Therefore, Mut proteins identify new strands by recognizing sequences which have not yet been methylated. Additionally, the newly synthesized strand in eukaryotes is more likely to have small breaks, also called DNA nicks. The MMR proteins can thus identify the nicked strand and target it for repair.

After identification of the new strand, nuclease enzymes cut the affected region and excise the incorrect nucleotides. Next, DNA polymerase fills in the correct nucleotides and DNA ligase seals the sugar-phosphate backbone of the DNA, thereby completing the mismatch repair process.

Defects in the Mismatch Repair Mechanism Can Cause Cancer

The human homolog of MutS is called Mutator S homolog 2 (MSH2). If MSH2 function is compromised, point mutations and frameshift mutations throughout the genome are not properly repaired. In consequence, humans carrying a single copy of such a compromised MSH2 have a higher likelihood of developing cancer.

Unrepaired Mutations Fuel Adaptation

Would it be best if MMR never missed a mismatch? Even low mutation rates can cause a problem for an organism. However, mutations also contribute to genetic variation in a population. For instance, a permissive mismatch repair system in a bacterium can, by chance, lead to the mutation of a gene that confers antibiotic resistance, thereby increasing the chances of bacterial survival and reproduction when exposed to antibiotics. This is great news for the bacterial population, but bad news for humans that rely on antibiotics to combat infectious diseases.

In fact, Staphylococcus aureus strains increasingly gain multidrug-resistance, meaning that few or no antibiotics can prevent the spread of this bacterium in a patient. Infections with multidrug-resistant bacteria are associated with a high mortality rate in humans. The widespread usage of antibiotics in livestock production and inappropriately shortened administration of antibiotics contribute to the emergence of multidrug-resistant bacteria.

Visão Geral

Os organismos são capazes de detectar e corrigir incompatibilidades de nucleótidos que ocorrem durante a replicação do DNA. Este processo sofisticado requer a identificação da nova cadeia e substituição das bases erradas por nucleótidos corretos. A reparação de pares errados é coordenada por muitas proteínas tanto em procariotas como em eucariotas.

A Família de Proteínas Mutator Desempenha um Papel Fundamental na Reparação de Pares Errados no DNA

O genoma humano tem mais de 3 mil milhões de pares de bases de DNA por célula. Antes da divisão celular, essa grande quantidade de informação genética precisa ser replicada. Apesar da capacidade de revisão da DNA polimerase, um erro de cópia ocorre aproximadamente a cada 1 milhão de pares de bases. Um tipo de erro é a incompatibilidade de nucleótidos, por exemplo, o emparelhamento de A com G ou T com C. Tais incompatibilidades são detectadas e reparadas pela família de proteínas Mutator. Essas proteínas foram descritas pela primeira vez na bactéria Escherichia coli (E. coli), mas existem homólogos em procariotas e eucariotas.

A Mutator S (MutS) inicia a reparação de pares errados (MMR) identificando e ligando-se ao local de incompatibilidade. Posteriormente, a MutL identifica qual das cadeias é a nova cópia. Apenas a nova cadeia necessita ser reparada enquanto que a cadeia molde precisa permanecer intacta. Como pode a maquinaria molecular identificar a cadeia de DNA recém-sintetizada?

Cadeias de DNA Recém-Sintetizadas Diferem da sua Cadeia Molde

Em muitos organismos, as bases de citosina e adenina da nova cadeia recebem um grupo metilo algum tempo após a replicação. Portanto, as proteínas Mut identificam novas cadeias reconhecendo sequências que ainda não foram metiladas. Além disso, é mais provável que a cadeia recém-sintetizada em eucariotas tenha pequenas quebras, também chamadas de cortes de DNA. As proteínas MMR podem, assim, identificar a cadeia recortada e direcioná-la para reparação.

Após a identificação da nova cadeia, enzimas nuclease cortam a região afetada e removem os nucleótidos incorretos. Em seguida, a DNA polimerase preenche os nucleótidos corretos e a DNA ligase sela o esqueleto de açúcar-fosfato do DNA, finalizando assim o processo de reparação de pares errados.

Defeitos no Mecanismo de Reparação de Pares Errados Podem Causar Cancro

O homólogo humano da MutS é chamado de Mutator S homólogo 2 (MSH2). Se a função da MSH2 estiver comprometida, mutações pontuais e mutações por mudança de matriz por todo o genoma não são adequadamente reparadas. Como consequência, os seres humanos que carreguem uma única cópia de um MSH2 tão comprometido têm maior probabilidade de desenvolver cancro.

Mutações Não Reparadas Alimentam Adaptação

Seria melhor se a MMR nunca perdesse uma incompatibilidade? Mesmo baixas taxas de mutação podem causar um problema para um organismo. No entanto, mutações também contribuem para a variação genética em uma população. Por exemplo, um sistema de reparação permissivo em uma bactéria pode, por acaso, levar à mutação de um gene que confere resistência a antibióticos, aumentando assim a probabilidade de sobrevivência e reprodução bacteriana quando exposta a antibióticos. Esta é uma óptima notícia para a população bacteriana, mas más notícias para os seres humanos que dependem de antibióticos para combater doenças infecciosas.

De fato, as estirpes de Staphylococcus aureus ganham cada vez mais resistência a múltiplos fármacos, o que significa que poucos ou nenhum antibiótico pode impedir a propagação desta bactéria em um paciente. Infecções com bactérias multirresistentes estão associadas a uma alta taxa de mortalidade em humanos. O uso generalizado de antibióticos na produção pecuária e a administração inadequadamente curta de antibióticos contribuem para o aparecimento de bactérias multirresistentes.


Suggested Reading

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter